• Title/Summary/Keyword: Vibration control structure

Search Result 966, Processing Time 0.023 seconds

Application of Linear Oscillatory Actuator to Active Structural Vibration Control (Linear Oscillatory Actuator를 이용한 구조물 진동의 능동제어연구)

  • 정태영;문석준;정종안;박희창;장석명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.248-254
    • /
    • 1996
  • In this paper active vibration control system using a linear oscillatory actuator (LOA) is studied to suppress structural vibration. Being compared with a hydraulic actuator, a LOA has simplified structure and requires a few elements, so it has lots of merits with respect to economics and maintenance. Performance test of active vibration control system using LOA is carried out on a steel test structure under base excitation. From this test it is confirmed that acceleration level of test structure is reduced near the resonance region. In the future research on the application to large to structures will be studied.

  • PDF

A Study on the Adaptability of Hybrid Mass Damper for the Vibration Control of Structure under Base Excitation (지반 기진력을 받는 구조물의 진동 제어를 위한 Hybrid Mass Damper 의 유용성 연구)

  • Lim, Chae-Wook;Chung, Tae-Young;Moon, Seok-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.268-275
    • /
    • 2000
  • A hybrid mass damper that combines a tuned mass damper and an actuator has been recognized to be one of the most promising devices for vibration control of a tall building subjected to dynamic loads such as wind and earthquake. In this paper, in order to reduce vibration levels of a 5-story test structure, a hybrid mass damper using AC-servomotor was designed and developed. And control performances using HMD and TMD under random and earthquake excitations are compared through experimental test. It is confirmed that it is more effective to reduce the vibration levels of the test structure using HMD especially for earthquake excitation.

  • PDF

A Design of Robust Vibration Control System for a Four-story Shear Structure (4층 층상 구조물에 대한 강인한 진동 제어 시스템 설계)

  • Yang, J.H.;Jeong, H.H.;Jeong, H.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.1
    • /
    • pp.60-67
    • /
    • 2003
  • This paper introduces basic study how to restrain the vibration of a four story shear structure. We have modeled a four story shear structure mathematically and have identified each parameters by experiment. We have gotten a reduced nominal model through modal analyzing method and the $H_{\infty}$ control theory is used in the control system design to get the robust controller. It's shown that the desirable performances is confirmed through the mathematical simulation. And a designed controller applying the $H_{\infty}$ control theory shows the good performance for the impulse disturbance through the simulation results. That is, the robustness of this control system is confirmed for the ability of disturbance rejection and modeling error.

  • PDF

A Vibration Control of Building Structure using Neural Network Predictive Controller (신경회로망 예측 제어기를 이용한 건축 구조물의 진동제어)

  • Cho, Hyun-Cheol;Lee, Young-Jin;Kang, Suk-Bong;Lee, Kwon-Soon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.434-443
    • /
    • 1999
  • In this paper, neural network predictive PID (NNPPID) control system is proposed to reduce the vibration of building structure. NNPPID control system is made up predictor, controller, and self-tuner to yield the parameters of controller. The neural networks predictor forecasts the future output based on present input and output of building structure. The controller is PID type whose parameters are yielded by neural networks self-tuning algorithm. Computer simulations show displacements of single and multi-story structure applied to NNPPID system about disturbance loads-wind forces and earthquakes.

  • PDF

Vibration Control of Flexible Structures Using Controllable ER Mounts : Experimental Investigation (제어 가능한 ER 마운트를 이용한 유연 구조물의 진동제어 : 실험적 고찰)

  • Choi, Seung-Bok;Sohn, Jung-Woo;Han, Young-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.400-408
    • /
    • 2009
  • This work presents experimental results on vibration control of flexible structures using the squeeze mode electrorheological(ER) mount. An appropriate size of the squeeze mode ER mount is devised and its field-dependent damping force characteristics are experimentally evaluated. The ER mount is then applied to two different flexible structures : beam structure and frame structure. An optimal controller associated with displacement and acceleration signals is designed to suppress the imposed vibration and experimentally realized using the microprocessor. Vibration control responses of the flexible structures such as acceleration are evaluated in time and frequency domains.

Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors

  • He, Jia;Xu, You-Lin;Zhang, Chao-Dong;Zhang, Xiao-Hua
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.981-1002
    • /
    • 2015
  • For vibration control of civil structures, especially large civil structures, one of the important issues is how to place a minimal number of actuators and sensors at their respective optimal locations to achieve the predetermined control performance. In this paper, a methodology is presented for the determination of the minimal number and optimal location of actuators and sensors for vibration control of building structures under earthquake excitation. In the proposed methodology, the number and location of the actuators are first determined in terms of the sequence of performance index increments and the predetermined control performance. A multi-scale response reconstruction method is then extended to the controlled building structure for the determination of the minimal number and optimal placement of sensors with the objective that the reconstructed structural responses can be used as feedbacks for the vibration control while the predetermined control performance can be maintained. The feasibility and accuracy of the proposed methodology are finally investigated numerically through a 20-story shear building structure under the El-Centro ground excitation and the Kobe ground excitation. The numerical results show that with the limited number of sensors and actuators at their optimal locations, the predetermined control performance of the building structure can be achieved.

Active mass damper system using time delay control algorithm for building structure with unknown dynamics

  • Jang, Dong-Doo;Jung, Hyung-Jo;Moon, Yeong-Jong
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.305-318
    • /
    • 2014
  • This paper numerically investigates the feasibility of an active mass damper (AMD) system using the time delay control (TDC) algorithm, which is one of the robust and adaptive control algorithms, for effectively suppressing the excessive vibration of a building structure under wind loading. Because of its several attractive features such as the simplicity and the excellent robustness to unknown system dynamics and disturbance, the TDC algorithm has the potential to be an effective control system for mitigating the vibration of civil engineering structures such as buildings and bridges. However, it has not been used for structural response reduction yet. In this study, therefore, the active control method combining an AMD system with the TDC algorithm is first proposed in order to reduce the wind-induced vibration of a building structure and its effectiveness is numerically examined. To this end, its stability analysis is first performed; and then, a series of numerical simulations are conducted. It is demonstrated that the proposed active structural control system can effectively reduce the acceleration response of the building structure.

Active Vibration Control of Structure Using Active Tuned Mass Damper and Modified PPF Controller (능동동조질량감쇠기와 수정 PPF 제어기를 이용한 구조물의 능동진동제어)

  • Kim, Ki-Young;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.550-555
    • /
    • 2007
  • This paper is concerned with the active vibration control of building structure by means of the active tuned mass damper and the modified positive position feedback controller. To this end, one-degree-of-freedom spring-mass-damper system equipped with ATMD is considered. The stability condition for the addressed system when applying the proposed PPF controller is derived by Routh-Hurwitz stability criterion. The stability condition shows that the modified PPF controller is absolutely stable if the controller gain is positive, so that the modified PPF controller can be used without difficulty. Theoretical study shows that the modified PPF controller can effectively suppress vibrations as the original PPF controller does in smart structure applications. To investigate the validity of the modified PPF controller, a simple experimental structure with an ATMD system driven by DC motor was built. The modified PPF control algorithm was implemented on Atmel 128 microcontroller. The experimental result shows that the modified PPF controller can also suppress vibrations for the real structure.

  • PDF

Active Vibration Control of Structure Using Active Tuned Mass Damper and Modified PPF Controller (능동동조질량감쇠기와 수정 PPF 제어기를 이용한 구조물의 능동진동제어)

  • Kim, Ki-Young;Kwak, Moon-K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.224-230
    • /
    • 2008
  • This paper is concerned with the active vibration control of building structure by means of the active tuned mass damper and the modified positive position feedback controller. To this end, one-degree-of-freedom spring-mass-damper system equipped with ATMD is considered. The stability condition for the addressed system when applying the proposed PPF controller is derived by Routh-Hurwitz stability criterion. The stability condition shows that the modified PPF controller is absolutely stable if the controller gain is positive. so that the modified PPF controller can be used without difficulty. Theoretical study shows that the modified PPF controller can effectively suppress vibrations as the original PPF controller does in smart structure applications. To investigate the validity of the modified PPF controller, a simple experimental structure with an ATMD system driven by DC motor was built. The modified PPF control algorithm was implemented on Atmel 128 microcontroller. The experimental result shows that the modified PPF controller can also suppress vibrations for the real structure.

Passive control of seismically excited structures by the liquid column vibration absorber

  • Konar, Tanmoy;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.561-573
    • /
    • 2010
  • The potential of the liquid column vibration absorber (LCVA) as a seismic vibration control device for structures has been explored in this paper. In this work, the structure has been modeled as a linear, viscously damped single-degree-of-freedom (SDOF) system. The governing differential equations of motion for the damper liquid and for the coupled structure-LCVA system have been derived from dynamic equilibrium. The nonlinear orifice damping in the LCVA has been linearized by a stochastic equivalent linearization technique. A transfer function formulation for the structure-LCVA system has been presented. The design parameters of the LCVA have been identified and by applying the transfer function formulation the optimum combination of these parameters has been determined to obtain the most efficient control performance of the LCVA in terms of the reduction in the root-mean-square (r.m.s.) displacement response of the structure. The study has been carried out for an example structure subjected to base input characterized by a white noise power spectral density function (PSDF). The sensitivity of the performance of the LCVA to the coefficient of head loss and to the tuning ratio have also been examined and compared with that of the liquid column damper (LCD). Finally, a simulation study has been carried out with a recorded accelerogram, to demonstrate the effectiveness of the LCVA.