• Title/Summary/Keyword: Vibration body

Search Result 1,153, Processing Time 0.026 seconds

The Effect of Whole-Body Vibration Exercise on Balance, Muscle Strength and Falls Efficacy in the Elderly (전신진동운동이 노인의 균형, 근력 및 낙상효능감에 미치는 영향)

  • Kim, Young-Min;Park, Jin-Hwan
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.4
    • /
    • pp.61-71
    • /
    • 2017
  • PURPOSE: The purpose of the present study was to investigate the effects of whole body vibration exercise on balance, muscle strength and falls efficacy in the elderly. METHODS: In this blinded randomized allocation study, 27 elderly were assigned to a whole-body vibration exercise group (n=14), consisting of 25 min structured exercises for 2 days per week for 6 weeks and a control group (n=13) performing the same program without vibration. At baseline and after the 6-week intervention, balance was measured using the Korean version of the Berg balance scale (K-BBS), timed up and go (TUG) test and functional reach test (FRT). Muscle strength was determined using the 30-s chair stand test (CST). Fear of falling was assessed using the Korean version of falls efficacy scale (K-FES). Paired t-test and independent t-test were used for within and between group comparisons, respectively. RESULTS: After the intervention, the experimental group showed significantly higher changes in all the parameters (K-BBS score, TUG test, CST, K-FES score) (p<.05) compared with the control group. However, there was no significant change in all parameters in the control group (p>.05). CONCLUSION: The whole-body vibration exercise program may be helpful to improve balance, mobility, muscle performance and fear of falling in the elderly.

Analysis of Characteristics of Body Vibrations for Korean High Speed Train (한국형 고속전철의 차체 진동특성 분석)

  • 김영국;박찬경;김석원;박태원
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.539-547
    • /
    • 2003
  • The prototype of Korean high speed train(KHST), composed of two power cars, two motorized cais and three trailer cars, has been designed, fabricated and tested. In this paper. the body vibration has been reviewed from the viewpoint of the vehicle's safety, the ride comfort and the vibration limits for components and sub-assemblies mounted on the car-body using by analytical method and experimental method. The on-line test of KHST has been tarried out up to 260 ㎞/h in the KTX line and the results of the on-line test show that KHST has no problems in the vehicle's safety. the comfort ride and the vibration limits at this speed. And the characteristics of body vibrations has been Predicted at 300 ㎞/h and 350 ㎞/h by fitting curve about the measured acceleration signals.

Development of a Test Dummy for the Evaluation of Driver's Response to Vehicle Vibration (운전 자세에서의 인체진동 평가용 시험용 더미 개발)

  • 장한기;홍석인;송치문;김기선;이정훈;김광준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.105-108
    • /
    • 2004
  • This paper introduces a process of the development of a vibration test dummy for the posture of inclined seating. Experimental devices was invented to measure apparent mass curves on the contact point of the hip and the back of a seated human body. During the excitation of a rigid seat secured to a hydraulic exciter, force and acceleration signals were measured on the contact points to determine the apparent mass. In order to describe nonlinear characteristics of a human body, seven levels of Gaussian random signal were used for the base excitation. The modeling of the human body will be performed using measured apparent mass curves. The modeling will be done by June and the prototype of the test dummy will be invented in the following six months.

  • PDF

A Laser Doppler Vibrometer Featured with the In-housed Mechanism for Adaptive Compensation of Body Vibration (자체진동의 보상을 위한 레이저 도플러 계측 신호 적응 진동보상 기법 연구)

  • Lee, Jae-Sik;Chang, Tae-Gyu;Kim, Jae-Hwa;Kim, Ho-Seong;Kang, Min-Sig
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.392-399
    • /
    • 2001
  • This paper presents an auxiliary beam-assisted adaptive compensation technique applied to alleviate the problem of LDV's body vibration. The LMS algorithm is applied to adaptively compensate the body vibration utilizing the reference signal provided by the auxiliary beam. The usefulness of the proposed technique is verified via computer simulations performed for diverse types of target signals and body vibration.

  • PDF

Analysis for Pure Translation and Couple Modes of an Elastically Suspended Rigid Body with Planes of Symmetry (대칭면을 갖는 단일 강체의 순수 병진 및 순 짝힘 모우드 해석)

  • 김동욱;최용제
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.260-267
    • /
    • 2002
  • For an elastically suspended rigid body with the planes of symmetry in a three dimensional space, a novel analysis fur the vibration modes is presented. From the decompositions of the stiffness and inertia matrices, the conditions for the existence of pure translation and pure couple modes are analyzed for an elastically suspended rigid body with the planes of symmetry. From this analysis, it can be showed that how the structure of stiffness and inertia must be related in order to produce the pure translation and pure couple modes when an elastically suspended rigid body has one, two, or three planes of symmetry.

  • PDF

Effect of a Whole Body Vibration Program on the Short-Term Health Promotion Effects for Agility, Flexibility, and Improvement

  • SHIN, Jhin-Yi;KIM, Jun-Su
    • Journal of Sport and Applied Science
    • /
    • v.6 no.4
    • /
    • pp.1-9
    • /
    • 2022
  • Whole body vibration is a new type of exercise that induces the response and adaptation of the neuromuscular system by stimulating tendons or muscles through vibration of various frequencies and muscle strength on the footrest. Therefore, in this study, we tried to find out the effect of health promotion and physical fitness promotion on agility, flexibility, and quick reaction ability in the state of general paralysis. Body vibration exercise was additionally applied to the entrance examination practical program for students preparing for the physical education entrance exam.

Benefits and Risks of Whole Body Vibration Based Acceleration Training (전신 진동기반 중력가속 운동의 효과와 위험성)

  • Lee, Woon-Yong
    • Journal of Wellness
    • /
    • v.7 no.2
    • /
    • pp.101-111
    • /
    • 2012
  • The benefits and risks of whole body vibration (WBV) based acceleration training on the human body have been documented for many years. WBV training has been shown to increase muscular strength, explosive power, bone strength, performance, mobility, cardiovascular function, circulation and anabolic hormone level and so on. The purpose of this review is correct understanding and application of WBV training. Without proper understanding, rather, to apply WBV to the human body can be fatal harm, and therefore know that what is vibration and has advantages and disadvantages. If there is anything positive side there is bound to the negative aspects. In this regard, WBV training can have a positive impact on the already confirmed by several studies and also, there have been scientifically proven. But still we are part of a scientific approach that is acceptable even to keep in mind that you will always coexist. Once again, the effect of WBV with a physical stimulus that risk and should be remembered. In addition, given the momentum and how to exercise and well-being well aware that vibration exercise as a way to think of how not to be familiar with.

Vibration Prediction of Helicopter Airframe (헬리콥터 동체의 진동 예측)

  • Yun, Chul Yong;Kim, Do-Hyung;Kang, Hee Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.340-346
    • /
    • 2013
  • This paper describes a helicopter vibration induced by main rotor in forward flight. The hub loads in the fixed frame, which are dominant source of helicopter vibration, are obtained by multi-blade summation of rotating blades loadings. The components of 3/rev, 4/rev, and 5/rev blades loadings are transmitted by blades to 4/rev hub loads in the fixed frame. The vertical vibrations of helicopter at pilot seat and copilot seat are calculated through rigid body transfer functions considering airframe to be rigid body. The blades are assumed to be elastic and undergo the flap, lag, and torsion motion and free wake aerodynamic model is used to calculate the precise blade loadings in the analysis. The 4/rev vertical vibration responses are analyzed from rotating blade loadings and fixed hub loadings.

  • PDF

Comparison and Analysis of Standardised Methods for Predicting the Hazards of Whole-body Vibration and Repeated Shocks (전신 피폭 진동 및 반복 충격에 의한 위함 예측 표준 방안들의 비교 분석)

  • ;;Michael J. Griffin
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.160-167
    • /
    • 2000
  • This paper addresses issues encountered in using the ISO and national standard codes to assess the hazards of whole-body vibration and repeat shocks. Their assessment methods are given in ISO 2631-1 (1974, 1985, 1997) and BS 6841 (1987) that are now available to us. Two standard codes can yield unfortunately different assessment results even for a single measured vibration signal. Possible reasons for such different results are pointed out and, furthermore, related questions that should be re-examined in the future are raised in this paper.

  • PDF

Flexibility Effects of the Vehicle Components on the Dynamic Characteristics of the Vehicle Systems (국부적 유연성이 차량 시스템 동특성에 미치는 영향)

  • 이상범;임홍재
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.682-686
    • /
    • 2001
  • A fundamental structural design consideration for a vehicle is the overall vibration characteristics in bending and torsion. Vibration characteristics of a vehicle system are mainly influenced by dynamic stiffness of the vehicle body structure and material and physical properties of the components attached to the vehicle body structure. The first step in satisfying this requirement is to obtain a satisfactory dynamic model of the vehicle structure. In this paper. modeling techniques of the vehicle components are presented and the effects of the vehicle components on the vibration characteristics of the vehicle are investigated,

  • PDF