• Title/Summary/Keyword: Vibration behavior

Search Result 1,647, Processing Time 0.024 seconds

Experimental Study on the Dynamic Behavior of a 500Wh Flywheel Energy Storage Device (500Wh급 플라이휠 에너지 저장장치 회전체계 동적 거동의 실험적 고찰)

  • 김영철;경진호;최상규
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.36-42
    • /
    • 1997
  • A prototype of 500Wh class flywheel energy storage device was designed and manufactured to check the previously predicted system performance. The system was intentionally designed to show rigid body behavior up to the maximum operating speed of 60000Tpm and to have its 2nd rigid critical mode, of which nodal point lies on the flywheel center of mass, around 4000 to 6000rpm with radial magnetic bearing stiffness of l.e+6 N/m. Numerous experiments an the system behavior showed that the PM axial bearing, designed utilizing a commercial code, acts as resonably as predicted and, most importantly, the system becomes stable after the 2nd critical speed. The EM radial bearing, however, was found out to have orthotropic property with much less radial stiffness values than expected, so that it was observed that the 2nd forward and backward critical modes were excited at 310 and 590rpm respectively with larger vibration amplitudes. Thus, in order to improve the system dynamic behavior, the EM radial bearing is currently being re designed so as to get bigger stiffness and, in turn, smoother operation of the system.

  • PDF

Vibration Reduction of Chip-Mount System (칩 마운트 시스템의 진동 경감)

  • 임경화;장헌탁
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.8
    • /
    • pp.331-337
    • /
    • 2001
  • The purpose of this study is to analyze the principal causes of vibration problem and find out the method of vibration reduction in a chip-mount system. The principal causes are investigated through measurements of vibration spectrum and model parameters. Modal parameters are obtained by using an experimental model test. Based on the model parameters from experiments. a model of finite element method is formulated. The model presents effective redesign of increasing the natural frequencies in order to reduce the vibration of a chip-mount system. Further, through computer simulation for the behavior of head to be main vibration source, the best acceleration pattern of head movement can be verified to achieve effective head-positioning and reduce the vibration due to head movement.

  • PDF

Wind-induced vibration control of a 200 m-high tower-supported steel stack

  • Susuki, Tatsuya;Hanada, Naoya;Homma, Shin;Maeda, Junji
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.345-356
    • /
    • 2006
  • It is well known that cylinder steel stacks are heavily impacted by vortex-induced vibration. However, the wind-induced vibration behaviors of tower-supported steel stacks are not clarified due to a lack of observation. We studied a stack's response to strong winds over a long period of time by observing the extreme wind-induced vibration of a 200 m-high tower-supported steel stack. This experiment aimed to identify the wind-induced vibration properties of a tower-supported steel stack and assess the validity of the vibration control method used in the experiment. Results revealed a trend in wind-induced vibration behavior. In turn, an effective measure for controlling such vibration was defined by means of increasing the structural damping ratio due to the effects of the tuned mass damper to dramatically decrease the vortex-induced vibration of the stack.

Vibration Analysis of Super-Precision Linear Motors (초정밀 선형 모터의 진동 분석)

  • Seol, Jin-Soo;Lee, Woo-Young;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.840-845
    • /
    • 2004
  • Development of the linear motors is recently required to control a high-speed and high-resolution in the high-integrated and speed process industry. This paper presents vibration analyses as well as measurement standards of the newly developed linear motors through analyzing the vibration characteristics of the advanced products. Vibration experiments are conducted for identifying vibration level during operation. They are also included in the modal test to analyze dynamic characteristics. Analytic data using Finite Element Method (FEM) are compared with the results of the modal. The FEM and experiments make it possible to understand these characteristics. Further, through computer simulation for the behavior of moving part to be vibration source, the best acceleration pattern of moving part movement can be verified to achieve effective moving part positioning and reduce the vibration due to moving part movement.

  • PDF

Vibration Behavior of a Rotating Brush Roll in Contact with a Solid Roll (강체롤과 접촉 회전하는 브러시롤의 진동 현상)

  • 허주호
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.499-509
    • /
    • 1997
  • During the process of oxide removal from work rolls in sheet metal manufacture, filamentary brushes frequently exhibit a bouncing or chatter behavior. The dynamics of this phenomenon is investigated through the development of expressions for the non-linear contact stiffness between the brush and the roll. With formulation of simple structural models, the time responses in the presence and absence of friction under random excitation are investigated. Possible solutions for the minimization or avoidance of this bouncing or chatter problem are also suggested.

  • PDF

A Study on the dynamic behavior of rail due to diped joints (레일이음매에서 발생되는 궤도동적거동에 대한 연구)

  • Kang, Yun-Suk;Yang, Shin-Chu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.337.2-337
    • /
    • 2002
  • When vehicle travelling along the track which has irregularity such as vortical profile, dynamic forces arise at the Wheel/Rail contact patch by wheel/rail interaction. In particular short wavelength irregularities on dipped joint and small stiffness of connecting rail bring about intense wheel/rail dynamic effects at higher speed. In the paper, a new model for dipped joint rail is developed to study dynamic behavior of track. (omitted)

  • PDF

Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations

  • Akgoz, Bekir;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.403-421
    • /
    • 2011
  • In the present manuscript, geometrically nonlinear free vibration analysis of thin laminated plates resting on non-linear elastic foundations is investigated. Winkler-Pasternak type foundation model is used. Governing equations of motions are obtained using the von Karman type nonlinear theory. The method of discrete singular convolution is used to obtain the discretised equations of motion of plates. The effects of plate geometry, boundary conditions, material properties and foundation parameters on nonlinear vibration behavior of plates are presented.

Fault detections in ring structures using vibration modes (진동모드를 이용한 링 구조물의 결함 탐지)

  • Kim, Seock-Hyun;Jang, Ho-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1925-1932
    • /
    • 2000
  • Damage detection methods using vibration modes are investigated on ring structures and. modal behavior of the slightly asymmetric rings is examined. Mode shapes changes, MSER(modal strain energy ratio) and MCR(modal curvature ratio) are applied to identify the locations of faults or damages. Parameters are calculated and compared by finite element analysis on rings with designed local damages. Damages are modeled as reduced stiffness in the analysis. The results show MSER and MCR can be proper factors to detect local damages in ring structures.

  • PDF

Vibration Analysis of Closed Thin-Walled Box Beams Using High-Order Beam Elements (고차 보요소를 이용한 폐단면 사각 박판보 진동해석)

  • 김윤영;김진홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.199-204
    • /
    • 1997
  • This paper proposes a new 'finite element for the vibration analysis of thin-walled beams of rectangular closed sections. To predict the dynamic behavior of the thin-walled beam accurately, warping and distortion deformations should be considered for the analysis. The motivation of the present development is that conventional beam elements cannot describe correctly deformations such as warping and lozenging which are not negligible in some situations. Several numerical examples are studied to confirm the validity of the present element.

  • PDF

An Integrated Approach to the Dynamic Testing of Aerospace Structures (항공기 구조물의 동적 거동 시험/해석 절차)

  • Lee, Sang-Yeop;LMS Intl, LMS Intl
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.348-357
    • /
    • 2006
  • Ground Vibration Tests (GVT) are needed on au new aircraft types and as part of certification. Its first objective is to verify models used for the calculation and prediction of the dynamic behavior of the structure. The main objectives of this paper are to introduce 'the integrated approach of dynamic testing for aerospace structure' in detail and 'The research projects in which LMS participated in aerospace structural dynamic area'

  • PDF