• Title/Summary/Keyword: Vibration analysis system

Search Result 3,298, Processing Time 0.03 seconds

A Study on the Random Vibration Analysis of Large Scale Antenna (대형 안테나의 Random Vibration 해석에 관한 연구)

  • Shin, Geon-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.44-50
    • /
    • 2021
  • This study analyzed the stability of antenna equipped on vehicles by the link of modal analysis and random vibration analysis with the vibration data of MIL-STD-810H, METHOD 514.8. As a result of the random vibration analysis of antenna, the maximum equivalent stress 41.9MPa and minimum margin of safety 8.37 was generated in the bracket of antenna by the vertical direction vibration. Thus, it was found that antenna has enough stability during the operation.

Vibration Characteristics Analysis of the Disk-Type Stator in Ultrasonic Levitation System (초음파 부상장치의 디스크형 스테이터의 진동 특성 해석)

  • Jeong, Sang-Hwa;Choi, Suk-Bong;Cha, Kyoung-Rae;Kim, Hyun-Uk;Kim, Kwang-Ho;Park, Jun-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.264-268
    • /
    • 2005
  • In the semiconductor and optical industry the non-contact transportation is required for reducing the damages. The ultrasonic levitation is the solution of the problem. In this paper, the ultrasonic levitation system and 3 disk-type stator for levitating various object are proposed. The vibration modes of disks are analyzed with FEM and designed with the analysis results. The 3D vibration profiles of the disks are measured by Laser scanning vibrometer for verifying the vibration characteristics of the system and the amplitudes of the disks and the levitation heights of object are measured for evaluating the performance.

  • PDF

Analysis and Countermeasure for Escalator Vibration (에스컬레이터 진동 분석 및 대책)

  • Lim, Su-Young;Kwon, Yi-Sug;Park, Seon-Ryong;Hong, Seong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.984-989
    • /
    • 2000
  • This paper deals with an analysis and countermeasure of escalator vibration. The vibration characteristics of escalators are studied theoretically and experimentally to find the main cause of severe vibration. The main source of vibration in escalators is found to be chordal effect due to the step chain and sprocket system. It is also found that the vibration become significantly large at so called no load condition, in which the load due to passengers, during down-moving, is equal to the resistive force in the driving system. Dynamic absorbers are implemented to suppress the vibration. A theoretical analysis is made to determine the appropriate dynamic absorber. Theoretical and experimental study shows that dynamic absorber is effective to suppress the vibration in escalators.

  • PDF

Structural vibration in Escalators :(II) Analysis and Countermeasure (에스컬레이터의 구조적 진동 : (II) 분석 및 대책)

  • 임수영;권이석;박선용;홍성욱
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.830-837
    • /
    • 2000
  • This paper deals with an analysis and countermeasure of escalator vibration. The vibration characteristics of escalators are studied theoretically and experimentally to fine the main cause of severe vibration. The main source of vibration in escalators is found to be chordal effect due to the step chain and sprocket system. It is also found that the vibration become significantly large at so called no load condition, in which the load due to passengers, during down-moving, is equal to the resistive force in the driving system. Dynamic absorbers are implemented to suppress the vibration, A theoretical analysis is made to determine the appropriate dynamic absorber. Theoretical and experimental study shows that dynamic absorber is effective to suppress the vibration in escalators.

  • PDF

Structural and Vibration Characteristics for the Scaffolding System of LNG Cargo Containment (LNG 화물창 비계 시스템의 구조해석 및 진동 특성)

  • Oh, B.J.;Ryu, B.J.;Lee, Y.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.546-554
    • /
    • 2010
  • The paper deals with the structural analysis and vibration test for the scaffolding system of LNG cargo containment. The eight-stories scaffolding system has telescopic area, working area, coner area and storage area in real system. In the structural analysis, the maximum displacement and stress of the each floor for the scaffolding system are investigated by finite element method. In the vibrational analysis, the natural frequencies and mode shapes for 8-stories scaffolding system of the LNG cargo containment are investigated. In order to compare theoretical natural frequencies with experimental ones, small size of 2-step scaffolding structure is used, and the theoretical results for natural frequency have a good agreement with experimental ones.

A Study on the Dynamic Design of Anti-Vibration Structures for Nano-class Measuring System (나노 측정시스템을 위한 방진 구조물의 동적 설계에 관한 연구)

  • 전종균;김강부;백재호
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.3
    • /
    • pp.37-43
    • /
    • 2003
  • It is necessary to design the anti-vibration system of precision machinery for a quality assurance. However, in general, the allowable vibration limit is not well known. In this paper, the vibration criteria for foundation of sensitive machinery is proposed and anti-vibration system is designed by using vibration measurement results of foundation. Also, the finite element analysis is performed to verify the effectiveness of the designed anti-vibration system and to determine the allowable dynamic loads of precision measuring system. The results of this study will be helpful for the future design of anti-vibration structures with nano scale measuring system.

  • PDF

Optimum Design of Viscous Fluid Damper for Reducing the Torsional Vibration of Propulsion Shaft System (추진축계 비틀림 진동 감쇠를 위한 점성 댐퍼의 최적 설계)

  • Park, Sang-Yun;Han, Kuk Hyun;Park, Ju-Min;Kwon, Sung Hun;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.9
    • /
    • pp.606-613
    • /
    • 2015
  • In this study, the torsional vibration analysis for a marine propulsion system is carried out by using the transfer matrix method(TMM). The torsional moment produced by gas pressure and reciprocating inertia force may yield severe torsional vibration problem in the shaft system which results in a damage of engine system. There are several ways to control the torsional vibration problem at hand, firstly natural frequencies can be changed by adjusting shaft dimensions and/or inertia quantities, secondly firing order and crank arrangement are modified to reduce excitation force, and finally lower the vibration energy by adopting torsional vibration damper. In this paper, the viscous torsional vibration damper is used for reducing the torsional vibration stresses of shaft system and it is conformed that optimum model of the viscous damper can be determined by selecting the geometric design parameters of damper and silicon oil viscosity.

Free Vibration Analysis of Simply-Supported Rectangular Plate with a Circular Cutout by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 원형 구멍을 갖는 단순지지 직사각형 평판의 자유진동해석)

  • Kwak, Moon-K.;Han, Sang-Bo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1177-1182
    • /
    • 2006
  • This paper is concerned with the vibration analysis of a simply-supported rectangular plate with a circular cutout. Even though there have be en many methods developed for the free vibration of the rectangular plate with a rectangular cutout., very few research has been carried out for the rectangular plate with a circular cutout. In this paper, a new methodology called independent coordinate coupling method, which was developed to save the computational effort for the free vibration analysis of rectangular plate with a rectangular cutout, is applied to the case of circular cutout. The independent coordinate coupling method employs the global coordinate system for the plate and the local coordinate system for the cutout. In the case of the rectangular plate with a circular cutout, the global coordinate system is the Cartesian co ordinate system and the local coordinate system is the polar coordinate system. By imposing the compatibility condition, the relationship between the global coordinates and the local coordinates is derived. This equation is then used for the calculation of the mass and stiffness matrices resulting in eigenvalue problem. The numerical results show the efficacy of the proposed method.

  • PDF

Free Vibration Analysis of Simply-supported Rectangular Plate with a Circular Cutout by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 원형 구멍을 갖는 단순지지 직사각형 평판의 자유진동해석)

  • Kwak, Moon-K.;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.643-650
    • /
    • 2006
  • This paper is concerned with the vibration analysis of a simply-supported rectangular plate with a circular cutout. Even though there have been many methods developed for the free vibration of the rectangular plate with a rectangular cutout, very few research has been carried out for the rectangular plate with a circular cutout. In this paper, a new methodology called independent coordinate coupling method, which was developed to save the computational effort for the free vibration analysis of rectangular plate with a rectangular cutout, is applied to the case of circular cutout. The independent coordinate coupling method employs the global coordinate system for the plate and the local coordinate system for the cutout. In the case of the rectangular plate with a circular cutout, the global coordinate system is the Cartesian coordinate system and the local coordinate system is the polar coordinate system. By imposing the compatibility condition, the relationship between the global coordinates and the local coordinates is derived. This equation is then used for the calculation of the mass and stiffness matrices resulting in eigenvalue problem. The numerical results show the efficacy of the proposed method.

Dynamic Characteristics of Bolted Joint in Tube Line by External Vibration (외부 가진을 받는 관로계에서 볼트 결합부의 동특성)

  • Park, T.W.;Kim, Y.K.;Shin, G.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.38-43
    • /
    • 2001
  • This paper describes the effect of dynamic characteristics in tube line by external vibration conveying fluid with the power steering system. By the experimental analysis we found out that the factor of system vibration is the fluid-structure interaction of tube line. In fluid-filled tube system we study on the influence that the natural frequency of system and the frequency of wave motion produce upon through experiment. Experiments are modal test, frequency response function in continuous system, and vibrating tests when the system is driving with bolted clamping joint condition. From the results of the experimental studies, we obtained that the natural frequencies of system are very important than the wave induced vibrations. And we found that the tendency of system vibration level was decreased by bolting force, bolting condition and clamping distance.

  • PDF