• Title/Summary/Keyword: Vibration acceleration

Search Result 1,275, Processing Time 0.026 seconds

Development of Artificial Neural Network Model for Estimation of Cable Tension of Cable-Stayed Bridge (사장교 케이블의 장력 추정을 위한 인공신경망 모델 개발)

  • Kim, Ki-Jung;Park, Yoo-Sin;Park, Sung-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.414-419
    • /
    • 2020
  • An artificial intelligence-based cable tension estimation model was developed to expand the utilization of data obtained from cable accelerometers of cable-stayed bridges. The model was based on an algorithm for selecting the natural frequency in the tension estimation process based on the vibration method and an applied artificial neural network (ANN). The training data of the ANN was composed after converting the cable acceleration data into the frequency, and machine learning was carried out using the characteristics with a pattern on the natural frequency. When developing the training data, the frequencies with various amplitudes can be used to represent the frequencies of multiple shapes to improve the selection performance for natural frequencies. The performance of the model was estimated by comparing it with the control criteria of the tension estimated by an expert. As a result of the verification using 139 frequencies obtained from the cable accelerometer as the input, the natural frequency was determined to be similar to the real criteria and the estimated tension of the cable by the natural frequency was 96.4% of the criteria.

Scaling Method of Earthquake Records for the Seismic Analysis of Tall Buildings (초고층 구조물의 지진해석을 위한 지진기록의 조정방법)

  • Kim, Tae-Ho;Park, Ji-Hyeong;Kim, Ook-Jong;Lee, Do-Bum;Ko, Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.11-21
    • /
    • 2008
  • In recent years, time history analysis has been the method generally used for the seismic analysis of tall buildings with damping devices. When T is the natural period of the first vibration mode of the structure, the sum of the spectral acceleration of the earthquake ground motion is usually adjusted to that of the design response spectrum in the period ranging from 0.2T to 1.5T to meet the requirements of design code. However, when the ground motion is scaled according to the design code, the differences in the responses obtained by response spectrum analysis (RSA) and time history analysis (THA) of the structures increase as the natural period of the structure becomes longer. When time history analysis is performed by using ground accelerations that are scaled according to the design code, base shear is similar to that obtained from RSA, but other responses, such as displacements, drifts and member forces, are underestimated compared to RSA. If these results are adjusted by multiplying with the scale-up factor, the scaled responses become much smaller. Therefore, a scaling method of ground motions corresponding with the design code is proposed in this study, as a way of assisting structural engineers in generating artificial ground motions.

A Study on the Wireless Ship Motion Measurement System Using AHRS (AHRS를 이용한 무선 선체 운동 측정 시스템에 관한 연구)

  • Kim, Dae-Hae;Lee, Sang-Min;Kong, Gil-Young
    • Journal of Navigation and Port Research
    • /
    • v.37 no.6
    • /
    • pp.575-580
    • /
    • 2013
  • The IMU(Inertial Measurement Unit) which is the expensive equipment has been used as a special limited area, usually in measurement of posture of applying to the areas of ship, submarine, aircraft and military equipment application. However, in the current situation, MEMS AHRS technology can replace the high-priced IMU in MEMS AHRS selected application field. In this paper, wireless hull motion measurement system was suggested for measuring key elements of ship's movement such as rolling, pitching and yawing using gyro, acceleration and magnetic sensors of AHRS. In order to reduce the error such as instantaneous acceleration, effects and vibration of geomagnetic, we have adopted the sensors equipped with Kalman filtering. The Wireless hull motion measurement system using AHRS sensors was tested in actual ship and it could easily be applied in limited installation circumstances of the ship. In the future, this system can be useful in the navigation safety and marine accident analysis by using with ship equipment such as INS or VDR in the maritime.

Field Application Analysis of Cable Tension Measuring Device on Cable-Stayed Bridges (사장교 케이블장력 계측장치의 현장적용성 분석)

  • Lee, Hyun-Chol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.295-311
    • /
    • 2021
  • In this study, an experiment was carried out on the field applicability of tension measuring devices of the cables in cable-stayed bridges. The vibration method was used to estimate the tension of cables of cable-stayed bridge, and the mode characteristics of the cable were analyzed using a cable tension measuring device. GTDL360, NI Module, and 9 Axes Motion Sensorwere applied to estimate the cable tension of five target bridges. Numerical analysis of the five target bridges was conducted to analyze the natural frequency of the cable and cable tension. The estimated tension of the cable based on field measurements and estimated tension of cable by numerical analysis were compared with the estimated tension of the cable based on field measurements. The analysis showed that the measured tension of the cable based on field measurements was within the margin of error. Therefore, it is safe to apply these measuring devices to the site. As a result of comparing and analyzing the values of the acceleration-based cable estimation tension and numerical analysis of the field demonstration bridge, the acceleration-based cable estimation of tension is deemed appropriate within the allowable range. On-site applicability analysis revealed limitations of the measuring devices, such as the installation location of sensors and weather conditions, so continuous follow-up research on smart cable tension measuring systems is expected.

A Study on Tension for Cables of a Cable-stayed Bridge Damper is Attached (댐퍼가 부착된 사장교의 케이블 장력에 관한연구)

  • Park, Yeon Soo;Choi, Sun Min;Yang, Won Yeol;Hong, Hye Jin;Kim, Woon Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.5
    • /
    • pp.609-616
    • /
    • 2008
  • Recently, many ocean bridges that connect land to island or island to island have been constructed along with the improvement of the nation's economy. Long-span bridges can be categorized as suspension bridge, cable-stayed bridge, arch bridge and truss bridge. In this study, correction with respect to construction error can be presented on site through the monitoring of the cable tension change of real structure for four major construction stages so that construction accuracy, including the management of profiles, can be improved. A vibration method, the so-called indirect method that uses the cable's natural frequency changes from the acceleration sensor installed on the cable, is applied in measuring cable tension. In this study, the estimation formula for the effective length of cable with damper is presented by comparing and analyzing between actual measurement and analysis result for the change of the cable's effective length. By the way, it is known that the reliability of estimating cable tension by applying the former method that uses the net distance from damper to anchorage is low. Therefore, for future reference of the maintenance stage, the presented formula for estimating the effective length of cable can be used as a reference for the rational decision-making, such as the re-tensioning and replacement of cable.

Equivalent Viscous Damping Ratio of a Friction Damper Installed in a SDOF Building (단자유도 건물에 설치된 마찰감쇠기의 등가점성감쇠비)

  • Seong, Ji-Young;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.2
    • /
    • pp.199-208
    • /
    • 2010
  • A friction damper installed at a building shows nonlinear behavior since its stick and slip states are occurred repeatedly depending on the amplitude of external loadings to dissipate input energy. Friction damping is existed for the building with a friction damper. In additionally viscous one is inherently included. Therefore, the building installed in such combined damping is quite involved to find the analytical solution. In this study, first, displacement and acceleration characteristics are identified based on the exact solution for a single-degree-freedom building with a friction damper having both friction and viscous damping. Second, in free vibration, the equivalent viscous damping ratio is obtained by the energy dissipation. Third, numerical analysis is carried out to find response configuration with various friction force ratios. Fourth, corresponding equivalent viscous damping ratio is derived with the finding that the response reaches into steady-state for both friction and viscous damped structure. It is deduced using balance of input external energy and output dissipation energy for steady-state response. Finally, the equivalent viscous damping ratios of free or harmonic vibration are verified through nonlinear analysis.

Reliability Analysis Method for Concrete Containment Structures (콘크리트 차폐(遮蔽) 구조물(構造物)의 신뢰성(信賴性) 해석방법(解析方法))

  • Han, Bong Koo;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.9-16
    • /
    • 1990
  • The safety of concrete nuclear containment structures should be secured against all kinds of loading due to various natural disasters or extraordinary accidental loads. The current design criteria of concrete containment structures are not based on the reliabillty-based design concept but rely on the conventional design concept. In this paper, a probabillty-based reliability analysis were proposed based on a FEM-based random vibration analysis and serviceability limit state of structures. The limit state model defined for the study is a serviceability limit state in terms of the more realistic crack failure that might cause the emission of radioactive materials, and the results are compared with those of the strength limit state. More accurate reliability analyses under various dynamic loads such as earthquake loads were made possible by incorporation the FEM and random vibration theory, which is different from the conventional reliability analysis method. The uncertainties in loads and resistance available in Korea and the refernces were adapted to the situation of Korea, and especially in the case of earthquake, the design earthquake was assessed based on the available re ports on probabilistic description of earthquake ground acceleration in the Korea peninsula.

  • PDF

해상풍속측정용 마스트의 충격해석에 관한 연구

  • Lee, Gang-Su;Kim, Man-Eung;Son, Chung-Ryeol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.108-108
    • /
    • 2009
  • The main object of this research is to minimize the shock effects which frequently result in fatal damage in wind met mast on impact of barge. The collision between wind met mast and barge is generally a complex problem and it is often not practical to perform rigorous finite element analyses to include all effects and sequences during the collision. LS-dyna generally purpose explicit finite element code, which is a product of ANSYS software, is used to model and analyze the non-linear response of the met mast due to barge collision. A significant part of the collision energy is dissipated as strain energy and except for global deformation modes, the contribution from elastic straining can normally be neglected. On applying impact force of a barge to wind met mast, the maximum acceleration, internal energy and plastic strain were calculated for each load cases using the finite element method and then compare it, varying to the velocity of barge, with one varying to the thickness of rubber fender conditions. Hence, we restrict the present research mainly to the wind met mast and also parametric study has been carried out with various velocities of barge, thickness of wind met mast, thickness and Mooney-Rivlin coefficient of rubber fender with experimental data. The equation of motion of the wind met mast is derived under the assumption that it was ignored vertical movement effect of barge on sea water. Such an analyzing method which was developed so far, make it possible to determine the proper size and material properties of rubber fender and the optimal moving conditions of barge, and finally, application method can be suggested in designing process of rubber fender considering barge impact.

  • PDF

Verification on the Application of Monitoring for Frame Structures Using the VRS-RTK Method through the Free Vibration Test (자유 진동 실험을 통한 VRS-RTK 기법을 이용한 골조 구조물의 모니터링 적용성 검토)

  • Choi, Se-Woon;Park, Hyo-Seon;Kim, Bub-Ryur;Lee, Hong-Min;Kim, You-Sok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.174-182
    • /
    • 2014
  • To monitor the wind-induced responses of buildings, conventional real-time kinematic (RTK) methods based on two global positioning system (GPS) receivers (e.g., a reference and a rover) are widely applied. However, these methods can encounter problems such as difficulty in securing and maintaining a space for a reference station. With the recently developed virtual reference station (VRS)-RTK approach, the position of a structure can be measured using only a rover receiver. In this study, to evaluate the applicability of VRS-RTK methods in monitoring the lateral structural responses of frame structures, we performed free vibration tests on a one-story frame model (the first natural frequency of 1 Hz) and a three-story frame model (the first natural frequency of 0.85 Hz). To assess the reliability of the displacement and acceleration responses measured by the GPS, we performed a concurrent measurement using laser displacement sensors and an accelerometer. The accelerometer results were consistent with the GPS measurements in terms of the time history and frequency content. Furthermore, to derive an appropriate sampling rate for the continuous monitoring of buildings, the errors in the displacement responses were evaluated at different GPS sampling rates (5, 10, 20 Hz). The results indicate that as the sampling rate increased, the errors in the displacement responses decreased. In addition, in the three-story model, all modal components (first, second, and third modes) could be recorded at a sampling rate of 20 Hz.

Tension Estimation of External Tendons in PC Bridges Using Vibration Measurement Method (진동 측정법을 이용한 PC교량 외부텐던의 장력 추정)

  • Park, Sung Woo;Jung, Ha Tae;Jung, Soo Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.3
    • /
    • pp.84-92
    • /
    • 2014
  • In this study, vibrational tendon tension measurement methods are applied to estimate tension of external tendons used in segmental post-tensioned bridges. The acceleration of various length type of tendons is measured and natural frequencies are obtained using FFT (Fast Fourier Transform). The obtained natural frequencies are within 1% error regardless of sensor direction and location. On the basis of natural frequency of tendon, estimation of the tendon tension is performed by using many types of solutions such as string theory equation, multi mode estimation, practical formula estimation and stiff string with clamped-clamped boundary conditions. The results are compared with each other and have shown that the flexural stiffness is not negligible in tendons of this type causing the vibration mode to be inharmonically related. The results have shown that the method using stiff string equation with clamped-clamped boundary conditions is more accurate than the other methods. Application example of in-service bridges has shown that force distribution effects from friction at deviation blocks can be effectively detected.