• Title/Summary/Keyword: Vibration Wave

Search Result 1,174, Processing Time 0.026 seconds

Study on active vibration control based on wave viewpoint using the longitudinal wave separation method (종파 분리 방법을 이용한 파동 관점의 능동 진동 제어)

  • Jung, Byung-Bo;Park, Young-Jin;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.928-933
    • /
    • 2007
  • In this research, we investigated active vibration control based on wave-viewpoint using the longitudinal wave separation method. The control strategy is the one of active vibration control technique for generating vibration reduced zone and uses wave information including the directivity as the cost function. In order to get the wave information from the measured values, we proposed and examined the time-domain longitudinal wave separation method proper to real time application like active vibration control. Using the proposed method, we examine the performance and feasibility of active vibration control based wave view-point through the simulation. The related experimental verification and application is going to be expected in a near future.

  • PDF

The research of vibration power generation to make effective use of ocean wave energy (파도에너지를 효율적으로 이용하기위한 파력진동발전기에 대한 연구)

  • Lee, Hong-Chan;Lee, Jae-Ho;Han, Ki-Bong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.10a
    • /
    • pp.75-75
    • /
    • 2011
  • This paper has been studied that ocean wave vibration power generator is composed of buoy and vibration generator to make effective use of ocean wave energy. We designed buoy to can occur resonance for dominant frequency with ocean wave. And then we fitted the natural frequency of vibration system with vibration power generator to buoy's natural frequency. And we can show that the amplitude of ocean wave up and down motion is decreased, on the other hand, the displacement of vibration system with vibration power generator is increased. Therefore, ocean wave vibration power generator which is proposed in this paper has merits not only securing its stability from surroundings but also producing more electronic power by using ocean wave energy.

  • PDF

Characteristics of Wave Transmission Through Various functions in Coupled Beams (연성보에서 연결 구조에 따른 파동 전달 특성)

  • 이병철;길현권;이효행;이용현;홍석윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.468-473
    • /
    • 2004
  • The objective of this paper is to analyze the characteristics of wave transmission through various junctions in coupled beams. The in-plane vibration as veil as the out-of-plane vibration are generated due to the wave conversion at the junctions in the coupled beams. The out-of-plane vibration is associated with propagation of out-of-plane waves (flexural waves). The in-plane vibration is associated with propagation of in-plane waves (longitudinal and torsional waves). In order to effectively reduce vibration and structure-borne noise, it is necessary to understand the characteristics of wave conversion at various junctions in the coupled structures. The numerical results in this paper have showed the characteristics of wave transmission through various junctions in coupled beams. Those could be helpful to designer to develop the idea to reduce vibration and structure-borne noise.

  • PDF

Study on the Buoy and Vibration System in Broadband Ocean Wave Power Generator (광대역 파력발전기의 진동시스템과 부양 체에 대한 연구)

  • Lee, Hong-Chan;Yea, Kyung-Soo;Hwang, Sung-Il;Han, Ki-Bong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.780-787
    • /
    • 2012
  • In general, the ocean wave vibration power generator consists of buoy, vibration system and linear generation system. It maximized energy efficiency by using resonance phenomenon that turned to the natural frequency of vibration system and frequency of ocean wave energy. But it is difficult to obtain efficiently energy from ocean wave because the frequency of ocean wave changes from moment to moment. In this paper, we study the buoy and vibration system of ocean wave power generator to solve these problem. Firstly, we designed the buoy that gives rise to resonance between ocean wave and buoy. Secondly, we designed vibration system that is occurred to resonance between buoy and vibration system. And then the relative velocity between the buoy and magnetic of ocean wave vibration generator increases and the relative displacement between buoy and ocean wave decreases at the same time. As a result, the method which is proposed in this paper has merits not only securing its stability from harsh ocean wave environment but also obtaining more kinetic energy from ever-changing ocean wave.

An Overview on Vibration or Wave Therapy in Korea (진동, 파동치료에 관한 국내 연구 동향)

  • Lee, Jae Heung;Beag, Ji You;Chang, Sung Jin;Pil, Gam Mai
    • Journal of Korean Medical Ki-Gong Academy
    • /
    • v.20 no.1
    • /
    • pp.15-67
    • /
    • 2020
  • Objective : The purpose of this study is to identify the trends of vibration(or wave) therapy in Korea, to actively utilize vibration(or wave) therapy, and to help research activities of vibration therapy in Korean Medicine. Methods : The following Korean words "진동기", "진동요법", "진동운동", "진동치료", "파동요법", "파동운동", "파동치료" were searched on three specialized search sites (RISS, NAL, DBpia). Trends of vibration therapy were analyzed through the selected researches suitable for this study among these searched researches in an overview format. Results : 1. A total of 8,116 studies were searched and a total of 365 studies were finally selected 2. From 2000 to 2019, when research began to increase in earnest, there were 17.45±10.28 studies per year, and the AGR(Average Annual Growth Rate) was 11.92%. 3. In the main field of research, the 'Medicine and Pharmacy' was the largest with 147(40.16%) studies. In the Middle Field, the 'Kinesiology' was the largest with 99(27.05%) studies. In the study design, 'RCT(Randomized Controlled trial)' was the largest with 138(47.75%) studies. In the Age Group, 'Youth' was the largest with 126(48.84%) studies. 4. The average of the number of participants was 24.90±17.44. 5. The most used Intervention was the 'WBV(Whole Body Vibration)' with 177(61.25%) studies. 6. The average of Intervention Period was 5.99±4.14 weeks, while the maximum was 36 weeks. 7. The journal that published the most research papers is 'K. J. of Sports Science(체육과학연구;13)', and the society is 'Rehabilitation Engineering And Assistive Technology Society of Korea(한국재활복지공학회; 14)'. The University that published the most dissertations is 'Sahmyook University(11)'. 8. The authors who published the most studies are Ju-Hwan O(8) as the main author and Tae Kyu Kwon(18) as the co-author (including the thesis Director). In an integrated analysis of the authors and co-authors, Tae Kyu Kwon published the most numerous studies(19) Conclusions : 1. The study of vibration or wave therapy has been increasing noticeably every year. 2. The major academic Fields studying vibration or wave therapy are the 'Kinesiologic Field', 'Physical Therapy Field', and 'Biomedical Engineering Field'. 3. The most chosen method of study design on vibration or wave treatment was 'RCT', and there was no significant change in the annual presentation rate. 4. Types of vibration or wave therapy could be classified as 'LVS(Local Vibration Stimulation)', 'WBV(Whole Body Vibration)', 'MV(Micro Vibration)', 'BV(Bio Vibration)' and 'SWV(Sound Wave Vibration)', and the study on Whole Body Vibration is most active. 5. Most of the studies of vibration or wave therapy were on musculoskeletal systems, but there were very few studies on internal diseases.

Vibration reduction Efficiency of the Wave-Guide typed Roadbed Structures using the Attenuation Coefficient (감쇠계수를 이용한 Wave-Guide형 노반구조의 방진성능 평가)

  • Lee, Il-Wha;Hwang, Seon-Keun;Joh, Sung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.650-655
    • /
    • 2010
  • The ground vibration which is induced by train leads defect and crack of neighborhood structure. Consequently, in order to reduce the train vibration, it is need to appropriate countermeasure. Wave-guide typed roadbed induce the train vibration to a channel wave forms using the difference of the track layer's stiffness. Therefore train vibration is restrictively attenuated along the longitudinal direction of the track. 5 kind of wave-guide typed roadbed structure is selected in this paper. A finite element, time history, linear spectrum, transfer function and damping ratio analysis are performed to evaluate the vibration reduction efficiency as the wave-guide roadbed.

  • PDF

Vibration characteristics of caisson breakwater for various waves, sea levels, and foundations

  • Lee, So-Young;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.525-539
    • /
    • 2019
  • In this study, vibration characteristics of a gravity-based caisson-foundation breakwater system are investigated for ambient and geometric parameters such as various waves, sea levels, and foundation conditions. To achieve the objective, following approaches are implemented. Firstly, operational modal analysis methods are selected to identify vibration modes from output-only dynamic responses. Secondly, a finite element model of an existing caisson-foundation breakwater system is established by using a structural analysis program, ANSYS. Thirdly, forced vibration analyses are performed on the caisson-foundation system for two types of external forces such as controlled impacts and wave-induced dynamic pressures. For the ideal impact, the wave force is converted to a triangular impulse function. For the wave flow, the wave pressure acting on the system is obtained from wave field analysis. Fourthly, vibration modes of the caisson-foundation system are identified from the forced vibration responses by combined use of the operational modal analysis methods. Finally, vibration characteristics of the caisson-foundation system are investigated under various waves, sea levels, and foundations. Relative effects of foundation conditions on vibration characteristics are distinguished from that induced by waves and sea levels.

An assessment of the effect of hull girder vibration on the statistical characteristics of wave loads

  • Ogawa, Yoshitaka;Takagi, Ken
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.80-85
    • /
    • 2011
  • For the assessment of statistical characteristics of wave loads in the real sea state, the probability distribution of wave loads are computed based on the sufficient duration of computations in irregular waves. First of all, the estimation of wave impact loads is well modified applying the displacement potential formulation, which was proposed by one of authors, for solving Wagner's flow model. Consequently, the present computation method is also modified. Prior to the computation in irregular waves, preliminary computation to determine the adequate number of realization of irregular waves is examined. The effect of hull girder vibration on the statistical characteristics is examined by means of the computation with/without hull girder vibration. It is found that hull girder vibration has a certain effect on the probability of occurrence of wave loads. Furthermore, computations taking account of the effect of operation, that is the effects of ship speed and course change, is conducted for the rational evaluation of the effects of hull girder vibration. It is clarified that the effect of operation on the statistical characteristics of wave loads is significant. It is verified that the evaluation without the effect of operation may overestimate the effect of hull girder vibration.

The Research of Vibration Power Generation with Two Degree of Freedom Using Ocean Wave (파도를 이용한 2자유도 파력진동발전시스템에 대한 연구)

  • Han, Ki-Bong;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1028-1034
    • /
    • 2011
  • This paper have been studied that ocean wave power vibration generation system with two D.O.F.(degree of freedom) consists of buoy and vibration generation system with two D.O.F. for using efficiency of ocean wave energy. It selected main frequencies ${\omega}_1$, ${\omega}_2$ in frequency with ocean wave and it fitted them to the natural frequencies of vibration system with two D.O.F. in the vibrational power generation system. Then each the relative velocity of between the winding coil and the permanent magnet is faster than the velocity of ocean wave up and down motion by resonance phenomenon. Also the ocean wave power generation with two D.O.F. obtained the more electric energy then the ocean wave power generation with one D.O.F. by coupling effect for two D.O.F. vibration system. Therefore ocean wave power vibration generation system with two degree of freedom that is proposed in this paper has merits which not only using more energy in the ocean wave but also obtaining more electronic energy.

A Review on the Effects of Earthborne Vibrations and the Mitigation Measures

  • Nam, Boo Hyun;Kim, Jinyoung;An, Jinwoo;Kim, Bumjoo
    • International Journal of Railway
    • /
    • v.6 no.3
    • /
    • pp.95-106
    • /
    • 2013
  • Earthborne vibrations are induced by construction operation such as pile driving, roadbed compaction, and blasting and also by transit activities such as truck and trains. The earthborne vibration creates the stress waves traveling outward from the source and can structurally damage nearby buildings and structures in the forms of direct damage to structure and damage due to dynamic settlement. The wave propagation characteristics depends on impact or vibration energy, distance from the source, and soil characteristics. The aim of this paper is to provide a comprehensive review on the mechanistic of earthborne vibration and the current practice of vibration control and mitigation measures. The paper describes the state of knowledge in the areas of: (1) mechanics of earthborne vibration, (2) damage mechanism by earthborne vibration, (3) calculation, prediction of ground vibration, (4) the criteria of vibration limits, (5) vibration mitigation measures and their performance, and (6) the current practice of vibration control and mitigation measures.