• Title/Summary/Keyword: Vibration Velocity

Search Result 1,406, Processing Time 0.029 seconds

Vibration Reducing Method for High Pressure Feedwater Heater Drain Piping System (고압급수가열기 배수계통 배관계 고진동 해소방안 연구)

  • Lee, Wook-Ryun;Lee, Jun-Shin;Kim, Sang-Bok;Hong, Soon-Bup;Shin, Yong-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1290-1295
    • /
    • 2006
  • The 120 meters high pressure feedwater heater drain piping in nuclear power plant had been suffered by excessive vibration from the beginning of power generation. As time goes by, the piping vibration was beyond the allowable limit and an appropriate countermeasure was required to prevent the fatigue failure of the pipeline from the abnormal vibration. In this study, the vibrational characteristics of high pressure feedwater heater drain piping and the countermeasure for abnormal vibration were investigated. Among the several vibration reduction methods, the piping layout changed by making the smooth pipeline was applied to the high Pressure feedwater heater drain piping in nuclear Power plant. Applying the countermeasure, the vibration level was found to reduce over 54 percents and was satisfied under the allowable velocity at the full-power operation condition.

  • PDF

Case Study for Compaction in the Vicinity of Structures in Inchon International Airport Civil Construction (인천국제공항 공항토목시설공사 구조물주변 다짐시공 사례 연구)

  • 최인걸;신종순;김동수;성낙일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.455-462
    • /
    • 1999
  • In this case, we have selected a representative location in the vicinity of large underground structures where they cross a runway and taxiway: measured the effects of the dynamic hammer compaction by distance: analyzed the measured results over a period of time and for many frequencies: and determined the maximum anticipated particle velocity (PV) of vibration, caused by the dynamic hammer, verses distance. In addition, while compacting the hydrofill, we reviewed the impact of subsurface particle velocities, caused by hammer compaction methods, upon newly constructed reinforced concrete underground structures. We have implemented the appropriate technical standards after reviewing domestic and international technical standards concerning allowable vibration velocity appropriate In the many types of underground structures at Inchon International Airport.

  • PDF

Reduction of Sound Radiated Power of Clamped Beams using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 음향파워 저감)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1104-1111
    • /
    • 2011
  • This paper investigates the filtered velocity feedback(FVF) controller for the reduction of the acoustic power radiated from a clamped beam. The instability problem due to the non-collocated sensor/actuator configuration when using PZT actuator should be sorted out. The roll-off property of the FVF controller at high frequency helps to alleviate the instability. The dynamics of clamped beams under forces and moments pair and the FVF controller are first formulated. The formulation of the sound radiated power is followed. The open loop transfer function(OLTF) synthesized with 100 modes is used to determine the stability of the control system. The control performance is finally estimated. The levels of the vibration and the sound radiated power are reduced in the wide bandbelow the tuning mode of the FVF controller.

Vibration Stability Analysis of Multi wall Carbon Nanotubes Considering Conveying Fluid Effect (유체유동효과를 고려한 다중벽 탄소나노튜브의 진동 및 안정성 해석)

  • Yun, Kyung-Jae;Choi, Jong-Woon;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.219-224
    • /
    • 2012
  • In this paper, vibration and flow-induced flutter instability analysis of cantilever multiwall carbon nanotubes conveying fluid and modelled as a thin-walled beam is investigated. Non-classical effects of transverse shear and rotary inertia are incorporated in this study. The governing equations and the associated boundary conditions are derived through Hamilton's principle. Numerical analysis is performed by using extend Galerkin method which enables us to obtain more exact solutions compared with conventional Galerkin method. Cantilevered carbon nanotubes are damped with decaying amplitude for flow velocity below a certain critical value, however, beyond this critical flow velocity, flutter instability may occur. Variations of critical flow velocity with both radius ratio and length of carbon nanotubes are investigated and pertinent conclusion is outlined.

  • PDF

Reduction of Sound Radiated Power of Clamped Beams using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 음향파워 저감)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Wei-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.377-383
    • /
    • 2011
  • This paper reports the filtered velocity feedback (FVF) controller to reduce the acoustic power from clamped beams. The instability problem due to the non-collocated sensor/actuator configuration when using PZT actuator should be resolved. The roll-off property of the FVF controller at high frequency helps to alleviate the instability. The dynamics of clamped beams under forces and moments pair and the FVF controller are first formulated. The formulation of the sound radiated power is followed. The open loop transfer function (OLTF) synthesized with 100 modes is used to determine the stability of the control system. The control performance is finally estimated. The levels of the vibration and the sound radiated power are reduced in the wide band below the tuning mode of the FVF controller.

  • PDF

Estimation of Total Acoustic Radiation Power of Submerged Circular Cylindrical Structure Using Surface Vibration Velocity (접수 원통형 구조물의 표면 진동속도를 이용한 총 방사음향파워 계산)

  • Han, Seungjin;Lee, Jongju;Kang, Myunghwan;Bae, Sooryong;Jung, Woojin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.236-239
    • /
    • 2014
  • Most naval underwater weapon system can be simplified to a circular cylindrical structure which has vibrating machineries inside. In order to predict efficiently the total acoustic radiation power of cylindrical structure, surface velocity is measured and radiation efficiency of surface element is calculated. Then, they are substituted to the surface pressure in the simplified Helmholtz integral equation which assumes acoustic far-field and plane-wave approximation at the surface. Surface velocity and total acoustic radiation power for a submerged cylinder are measured in water-tank. In this example, it is found that total acoustic power output obtained from the prediction is in good agreement with that of measurement in mid-high frequency range.

  • PDF

The Mixed Charging Method with Low-velocity Explosives and Normal Explosives in Tunnel Blasting (터널 발파에서의 저폭속폭약과 일반폭약의 혼용장약법)

  • Kang, Dae-Woo;Ahn, Bong-Do
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.252-259
    • /
    • 2010
  • In urban tunnels, namely, in case there are residents in the near distance, we normally use non-vibration and ambient vibration which are not blasting methods because it’ impossible to meet the blasting vibration regulation with only normal explosives. However, non-vibration methods not only cause increase of excavating cost, but need much time than explosives. Generally, the lower velocity explosives with 2,000 m/s VOD have been applied to ambient vibration blasting in open cut area, but difficult in tunneling in its use. However, by charging the hole together with lower velocity explosives and normal explosives, we have got the result which shows 20~30% vibration decrease compared with using only normal explosives. Therefore, I’ like to suggest the blasting method which is able to do as ambient vibration using lower velocity explosives mixed with normal explosives in urban tunnel and the area which is adjacent to security facilities within the vibration regulation.

Active Vibration Control of Clamped Beams Using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.447-454
    • /
    • 2011
  • This paper reports a filtered velocity feedback(FVF) controller, which is an alternative to direct velocity feedback(DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated. The effects of the design parameters(cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function(OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased. The control performance is finally estimated for the clamped beam. More than 10 dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

Active Vibration Control of Clamped Beams using Filtered Velocity Feedback Controllers (Filtered Velocity Feedback 제어기를 이용한 양단지지보의 능동진동제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.264-270
    • /
    • 2011
  • This paper reports a filtered velocity feedback (FVF) controller, which is an alternative to direct velocity feedback (DVFB) controller. The instability problems due to high frequency response under DVFB can be alleviated by the suggested FVF controller. The FVF controller is designed to filter out the unstable high frequency response. The FVF controller and the dynamics of clamped beams under forces and moments are first formulated The effects of the design parameters (cut-off frequency, gain, and damping ratio) on the stability and the performance are then investigated. The cut-off frequency should be selected not to affect the system stability. The magnitude of the open loop transfer function (OLTF) at the cut-off frequency should be small. As increasing the gain of the FVF controller, the magnitude of the OLTF is increased, so that the closed loop response can be reduced more. The enhancement of the OLTF at the cut-off frequency is reduced but the phase behavior around the cut-off frequency is distorted, as the damping ratio is increased The control performance is finally estimated for the clamped beam. More than 10dB reductions in velocity response can be achieved at the modal frequencies from the first to eighth modes.

  • PDF

Analysis of vortex induced vibration frequency of super tall building based on wind tunnel tests of MDOF aero-elastic model

  • Wang, Lei;Liang, Shuguo;Song, Jie;Wang, Shuliang
    • Wind and Structures
    • /
    • v.21 no.5
    • /
    • pp.523-536
    • /
    • 2015
  • To study the vibration frequency of super high-rise buildings in the process of vortex induced vibration (VIV), wind tunnel tests of multi-degree-of-freedom (MDOF) aero-elastic models were carried out to measure the vibration frequency of the system directly. The effects of structural damping, wind field category, mass density, reduced wind velocity ($V_r$), as well as VIV displacement on the VIV frequency were investigated systematically. It was found that the frequency drift phenomenon cannot be ignored when the building is very high and flexible. When $V_r$ is less than 8, the drift magnitude of the frequency is typically positive. When $V_r$ is close to the critical wind velocity of resonance, the frequency drift magnitude becomes negative and reaches a minimum at the critical wind velocity. When $V_r$ is larger than12, the frequency drift magnitude almost maintains a stable value that is slightly smaller than the fundamental frequency of the aero-elastic model. Furthermore, the vibration frequency does not lock in the vortex shedding frequency completely, and it can even be significantly modified by the vortex shedding frequency when the reduced wind velocity is close to 10.5.