• Title/Summary/Keyword: Vibration Sensors

Search Result 742, Processing Time 0.021 seconds

Vibration Characteristics of Stacked Piezoelectric Transducers (적층 압전 변환기의 진동 특성)

  • Kim, Dae Jong;Kim, Jin Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.199-206
    • /
    • 2015
  • This paper deals with the vibration characteristics of stacked transducers composed of piezoelectric discs, which are main elements of ultrasonic sensors or actuators. The stacked transducers were devised in the sense of natural frequencies. Two- or three-layer transducers were fabricated with piezoelectric discs of different diameters. The natural frequencies were determined by the finite element analysis and they were verified by comparing them with experimental results. It appeared that the natural frequencies of the stacked piezoelectric transducers include the natural frequencies of the constituent piezoelectric discs and the natural frequencies caused by stacking. Based on these results, it would be possible to predict the vibration characteristics of the stacked piezoelectric transducers in a design process.

Thermally-Induced Vibration Control of Rotating Composite Thin-Walled Blade (회전하는 복합재 블레이드의 열진동 해석 및 제어)

  • Jung, Hoe-Do;Na, Sung-Soo;Kwak, Mun-Kyu;Heo, Seok
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1696-1701
    • /
    • 2003
  • This paper deals with a vibration control analysis of a rotating composite blade, modeled as a tapered thinwalled beam induced by heat flux. The displayed results reveal that the thermally induced vibration yields a detrimental repercussions upon their dynamic responses. The blade consists of host graphite epoxy laminate with surface and spanwise distributed transversely isotropic (PZT-4) sensors and actuators. The controller is implemented via the negative velocity and displacement feedback control methodology, which prove to overcome the deleterious effect associated with the thermally induced vibration. The structure is modeled as a composite thin-walled beam incorporating a number of nonclassical features such as transverse shear, secondary warping, anisotropy of constituent materials, and rotary inertias.

  • PDF

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.

Literature Review of Machine Condition Monitoring with Oil Sensors -Types of Sensors and Their Functions (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰 (윤활유 센서의 종류와 기능))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.297-306
    • /
    • 2020
  • This paper reviews studies on the types and functions of oil sensors used for machine condition monitoring. Machine condition monitoring is essential for maintaining the reliability of machines and can help avoid catastrophic failures while ensuring the safety and longevity of operation. Machine condition monitoring involves several components, such as compliance monitoring, structural monitoring, thermography, non-destructive testing, and noise and vibration monitoring. Real-time monitoring with oil analysis is also utilized in various industries, such as manufacturing, aerospace, and power plants. The three main methods of oil analysis are off-line, in-line, and on-line techniques. The on-line method is the most popular among these three because it reduces human error during oil sampling, prevents incipient machine failure, reduces the total maintenance cost, and does not need complicated setup or skilled analysts. This method has two advantages over the other two monitoring methods. First, fault conditions can be noticed at the early stages via detection of wear particles using wear particle sensors; therefore, it provides early warning in the failure process. Second, it is convenient and effective for diagnosing data regardless of the measurement time. Real-time condition monitoring with oil analysis uses various oil sensors to diagnose the machine and oil statuses; further, integrated oil sensors can be used to measure several properties simultaneously.

Steam Leak Detection Method in a Pipeline Using Histogram Analysis (히스토그램 분석을 이용한 배관 증기누설 검출 방법)

  • Kim, Se-Oh;Jeon, Hyeong-Seop;Son, Ki-Sung;Chae, Gyung-Sun;Park, Jong Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.307-313
    • /
    • 2015
  • Leak detection in a pipeline usually involves acoustic emission sensors such as contact type sensors. These contact type sensors pose difficulties for installation and cannot operate in areas having high temperature and radiation. Therefore, recently, many researchers have studied the leak detection phenomenon by using a camera. Leak detection by using a camera has the advantages of long distance monitoring and wide area surveillance. However, the conventional leak detection method by using difference images often mistakes the vibration of a structure for a leak. In this paper, we propose a method for steam leakage detection by using the moving average of difference images and histogram analysis. The proposed method can separate the leakage and the vibration of a structure. The working performance of the proposed method is verified by comparing with experimental results.

A study on machine learning-based anomaly detection algorithm using current data of fish-farm pump motor (양식장 펌프 모터 전류 데이터를 이용한 머신러닝 기반 이상 감지 알고리즘에 관한 연구)

  • Sae-yong Park;Tae Uk chang;Taeho Im
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.37-45
    • /
    • 2023
  • In line with the 4th Industrial Revolution, facility maintenance technologies for building smart factories are receiving attention and are being advanced. In addition, technology is being applied to smart farms and smart fisheries following smart factories. Among them, in the case of a recirculating aquaculture system, there is a motor pump that circulates water for a stable quality environment in the tank. Motor pump maintenance activities for recirculating aquaculture system are carried out based on preventive maintenance and data obtained from vibration sensor. Preventive maintenance cannot cope with abnormalities that occur before prior planning, and vibration sensors are affected by the external environment. This paper proposes an anomaly detection algorithm that utilizes ADTK, a Python open source, for motor pump anomaly detection based on data collected through current sensors that are less affected by the external environment than noise, temperature and vibration sensors.

Analysis of Vibration Velocity Behavior of Rock Slope in Rock Blasting by Three-Dimensional Numerical Analysis (3차원 수치해석을 통한 암반 발파 시 암반 사면의 진동속도 거동 분석)

  • Chang-Young Park;Jae-Young Heo;Yong-Jin Kim;Seung-Joo Lee;Young-Seok Kim;Ji-Hoon Kim;Yong-Seong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.71-86
    • /
    • 2023
  • Rock blasting tests using underground penetration-type displacement sensors were conducted, and three-dimensional finite element numerical analyses were performed to assess their applicability and mitigate slope hazards during rock blasting. Additionally, parameters influencing vibration velocity were investigated during the tests. The results confirmed that underground penetration-type displacement sensors are suitable for monitoring rock slope behavior, and the numerical analyses revealed that the most influential parameter on vibration velocity during rock blasting is the unit weight. Furthermore, it was observed that vibration velocity decreases significantly with distance from the blast source, and proximity to the source leads to substantial variations in vibration velocity due to differences in elastic modulus and unit weight. Changes in internal friction angle and adhesive strength had minimal impact.

Improved block-wise MET for estimating vibration fields from the sensor

  • Jung, Byung Kyoo;Jeong, Weui Bong;Cho, Jinrae
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.279-285
    • /
    • 2017
  • Modal expansion technique (MET) is a method to estimate the vibration fields of flexible structures by using eigenmodes of the structure and the signals of sensors. It is the useful method to estimate the vibration fields but has the truncation error since it only uses the limit number of the eigenmodes in the frequency of interest. Even though block-wise MET performed frequency block by block with different valid eigenmodes was developed, it still has the truncation error due to the absence of other eigenmodes. Thus, this paper suggested an improved block-wise modal expansion technique. The technique recovers the truncation errors in one frequency block by utilizing other eigenmodes existed in the other frequency blocks. It was applied for estimating the vibration fields of a cylindrical shell. The estimated results were compared to the vibration fields of the forced vibration analysis by using two indices: the root mean square error and parallelism between two vectors. These indices showed that the estimated vibration fields of the improved block-wise MET more accurately than those of the established METs. Especially, this method was outstanding for frequencies near the natural frequency of the highest eigenmode of each block. In other words, the suggested technique can estimate vibration fields more accurately by recovering the truncation errors of the established METs.

Active control of the Self-excited Vibration of a Rotor System Supported by Tilting-Pad Gas Bearing (틸딩 패드 기체 베어링으로 지지된 로터 계 자려 진동의 능동제어)

  • Kwon, Tae-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.119-125
    • /
    • 2001
  • This paper presents an experimental study on active control of self-excited vibration for a high speed turbomachinery. In order to suppress the self-excited vibration, it is necessary to actively control the air film pressure or the air film thickness. In this study, active pads are used to control the air film thickness. Active pads are supported by pivots containing piezoelectric actuators and their radial position can be actively controlled by applying voltage to the actuators. The transfer characteristics from actuator inputs to shaft vibration outputs are experimentally investigated. In a tilting-pad gas bearing (TPGB), a shaft is supported by the pressurized air film. Four gap sensors were used to measure the vibration of the shaft and PID was used in the feedback control of the shaft vibration. The experimental results show that the self-excited vibration of the rotor can be effectively suppressed if the PID controller gains are properly chosen. As a result we find that the feedback control is effective for suppressing the self-excited vibration of a rotor system using stack-type PZT actuators.

  • PDF

A Study on the Construction of Vibration Measurement System and Evaluation of Vibration Related Habitability on the Training Ship (진동계측 시스템의 구축과 실습선 내 거주성에 미치는 진동 평가에 관한 연구)

  • Nam, Taek-Kun;Kim, Deug-Bong;Lee, Don-Chcol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.1
    • /
    • pp.135-140
    • /
    • 2010
  • Vibration on the ship was generated mainly by main engine and propeller. The vibration which is generated from the ship has an effect on durability of ship's machinery and it also has an evil influence on the working conditions for crew. In this research, vibration measurement system to measure ship's vibration was built and vibration signals using acceleration sensors were measured from an accomodation space of training ship. An evaluation of vibration with regard to habitability was also discussed and the evaluation process followed the guidelines ISO6954:2000E.