• 제목/요약/키워드: Vibration Isolation Technology

검색결과 98건 처리시간 0.031초

SMA 메쉬 와셔 진동 절연기를 적용한 X-band 안테나의 미소진동 절연성능 검토 (Investigation of Micro-vibration Isolation Performance of SMA Mesh Washer Isolator for Vibration Isolation of X-band Antenna)

  • 전수현;권성철;김대관;오현웅
    • 한국항공우주학회지
    • /
    • 제42권11호
    • /
    • pp.988-995
    • /
    • 2014
  • 관측위성으로부터 획득된 영상데이터를 지상국에 효율적으로 전송하기 위해 2축 짐벌 형태의 지향성 X-band 안테나가 적용되고 있으며, 안테나의 고속 정밀지향성 확보를 위해 구비된 모터 및 기어 간의 부정확한 맞물림으로부터 발생되는 미소진동은 영상품질 저하의 원인으로 작용한다. 고해상도 관측위성의 지향성능 향상을 통한 고해상도 영상정보 획득을 위해서는 안테나 구동시 발생하는 미소진동이 주요 임무장비에 전달되지 않도록 미소진동 절연이 요구된다. 본 논문에서는 X-band 안테나의 미소진동절연을 목적으로 의탄성 SMA 메쉬와셔 진동 절연기를 제안하였으며, 정하중 시험을 통해 진동 절연기의 기본 특성을 확인하였다. 또한, X-band 안테나의 미소진동 시험을 통해 진동절연기 유무에 따른 진동절연성능을 비교 및 분석 하였다.

A PERFORMANCE ASSESSMENT OF A BASE ISOLATION SYSTEM FOR AN EMERGENCY DIESEL GENERATOR IN A NUCLEAR POWER PLANT

  • Choun, Young-Sun;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.285-298
    • /
    • 2008
  • This study evaluates the performance of a coil spring-viscous damper system for the vibration and seismic isolation of an Emergency Diesel Generator (EDG) by measuring its operational vibration and seismic responses. The vibration performance of a coil spring-viscous damper system was evaluated by the vibration measurements for an identical EDG set with different base systems - one with an anchor bolt system and the other with a coil spring-viscous damper system. The seismic performance of the coil spring-viscous damper system was evaluated by seismic tests with a scaled model of a base-isolated EDG on a shaking table. The effects of EDG base isolation on the fragility curve and core damage frequency in a nuclear power plant were also investigated through a case study.

통합제진마운트용 MR 댐퍼의 실험적 성능 평가 (Experimental Performance Evaluation of MR Damper for Integrated Isolation Mount)

  • 성민상;최승복;김철호;이홍기;백재호;한현희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.65-70
    • /
    • 2010
  • This paper presents experimental performance evaluation of a magnetorheological (MR) damper for integrated isolation mount for ultra-precision manufacturing system. The vibration sources of the ultra-precision manufacturing system can be classified as follows: the one is the environmental vibration from the floor and the other is the transient vibration occurred from stage moving. The transient vibration occurred from the stage moving has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore in this research, a semi-active MR damper, which can control the transient vibration, is adopted. Also the stage needs to be isolated from tiny vibrations from the floor. For this purpose, a dry-frictionless MR damper is required. In order to achieve this goal, a novel type of MR damper is originally designed and manufactured in this work. Subsequently, the damping force characteristics of MR damper are evaluated by simulation and experiment. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated.

  • PDF

통합제진마운트용 MR 댐퍼의 실험적 성능 평가 (Experimental Performance Evaluation of MR Damper for Integrated Isolation Mount)

  • 성민상;최승복;김철호;이홍기;백재호;한현희;우제관
    • 한국소음진동공학회논문집
    • /
    • 제20권12호
    • /
    • pp.1161-1167
    • /
    • 2010
  • This paper presents experimental performance evaluation of a magnetorheological(MR) damper for integrated isolation mount for ultra-precision manufacturing system. The vibration sources of the ultra-precision manufacturing system can be classified as follows: the one is the environmental vibration from the floor and the other is the transient vibration occurred from stage moving. The transient vibration occurred from the stage moving has serious adverse effect to the process because the vibration scale is quite larger than other vibrations. Therefore in this research, a semi-active MR damper, which can control the transient vibration, is adopted. Also the stage needs to be isolated from tiny vibrations from the floor. For this purpose, a dry-frictionless MR damper is required. In order to achieve this goal, a novel type of MR damper is originally designed and manufactured in this work. Subsequently, the damping force characteristics of MR damper are evaluated by simulation and experiment. In addition, the vibration control performance of the MR damper associated with the stage mass is evaluated.

Vibration characteristic of rubber isolation plate-shell integrated concrete liquid-storage structure

  • Cheng, Xuansheng;Qi, Lei;Zhang, Shanglong;Mu, Yiting;Xia, Lingyu
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.691-703
    • /
    • 2022
  • To obtain the seismic response of lead-cored rubber, shape memory alloy (SMA)-rubber isolation Plate-shell Integrated Concrete Liquid-Storage Structure (PSICLSS), based on a PSICLSS in a water treatment plant, built a scale experimental model, and a shaking table test was conducted. Discussed the seismic responses of rubber isolation, SMA-rubber isolation PSICLSS. Combined with numerical model analysis, the vibration characteristics of rubber isolation PSICLSS are studied. The results showed that the acceleration, liquid sloshing height, hydrodynamic pressure of rubber and SMA-rubber isolation PSICLSS are amplified when the frequency of seismic excitation is close to the main frequency of the isolation PSICLSS. The earthquake causes a significant leakage of liquid, at the same time, the external liquid sloshing height is significantly higher than internal liquid sloshing height. Numerical analysis showed that the low-frequency acceleration excitation causes a more significant dynamic response of PSICLSS. The sinusoidal excitation with first-order sloshing frequency of internal liquid causes a more significant sloshing height of the internal liquid, but has little effect on the structural principal stresses. The sinusoidal excitation with first-order sloshing frequency of external liquid causes the most enormous structural principal stress, and a more significant external liquid sloshing height. In particular, the principal stress of PSICLSSS with long isolation period will be significantly enlarged. Therefore, the stiffness of the isolation layer should be properly adjusted in the design of rubber and SMA-rubber isolation PSICLSS.

우주용 냉각기의 미소진동을 이용한 에너지 수확 시스템의 실험적 성능검증 (Experimental Performance Verification of Energy-Harvesting System Using the Micro-vibration of the Spaceborne Cryocooler)

  • 정현모;권성철;오현웅
    • 항공우주시스템공학회지
    • /
    • 제10권3호
    • /
    • pp.15-22
    • /
    • 2016
  • The on-board appendages of satellites with mechanical moving parts such as the fly-wheel, the control-moment gyro, the cryocooler, and the gimbal-type directional antenna can generate an undesirable micro-vibration disturbance, which is one of the main causes of the image-quality degradation that affects high-resolution observation satellites. Consequently, the isolation of the micro-vibration issue has always been considered as salient, and the micro-vibration is therefore the focus of this study wherein a complex system that can provide the dual functions of a guaranteed vibration-isolation performance and electrical energy harvesting is proposed. The vibration-isolation and energy-harvesting performances of the complex system are predicted through a numerical analysis based on the characteristics that are obtained from component-level tests. In addition, the effectiveness of the complex system that is proposed in this study is verified through an assembly-level functional-performance test.

PSO알고리즘을 활용한 능동 제진 시스템 PID 오토 튜닝에 관한 연구 (A Study on the Active Vibration Isolator PID Auto-tuning Using PSO Algorithm)

  • 안일균;허헌;김효영;김기현
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.59-64
    • /
    • 2022
  • Vibration is one of the factors that degrades the performance of equipment and measurement equipment used in high-tech industries such as semiconductors and display. The vibration isolator is classified into passive type and active type. The passive vibration isolator has the weakness of insufficient vibration isolation performance in the low frequency band, so an active vibration control system that can overcome these problems is used recently. In this paper, PID controller is used to control the active vibration isolator. Methods for setting the gain of the PID controller include the Zeigler-Nichols method, the pole placement method. These methods have the disadvantage of requiring a lot of time or knowing the system model accurately. This paper proposes the gain auto tuning method of the active vibration isolator applied with the PSO algorithm, which is an optimization algorithm that is easy to implement and has stable convergence performance with low calculations. It is expected that it will be possible to improve vibration isolation performance and reduce the time required for gain tuning by applying the proposed PSO algorithm to the active vibration isolator.

Numerical Feasibility Study for a Spaceborne Cooler Dual-function Energy Harvesting System

  • Kwon, Seong-Cheol;Oh, Hyun-Ung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.579-587
    • /
    • 2017
  • Spaceborne cryocoolers produce undesirable micro-vibration disturbances during their on-orbit operation, which are a primary source of image-quality degradation for high-resolution observation satellites. Therefore, to comply with the strict mission requirement of high-quality image acquisition, micro-vibration disturbances induced by cooler operation have always been subjected to an isolation objective. However, in this study, we focused on the applicability of energy harvesting technology to generate electrical energy from micro-vibration energy of the cooler and investigated the feasibility of utilizing harvested energy as a power source to operate low-power-consumption devices such as micro-electromechanical system (MEMS) devices. A tuned mass damper (TMD)-type electromagnetic energy harvester combined with a conventional passive vibration isolator was proposed to achieve this objective. The system performs the dual functions of electrical energy generation and micro-vibration isolation. The effectiveness of the strategy was evaluated through numerical simulations.

하모닉 밸런스법을 이용한 비선형 진동절연 시스템의 근사적 응답 (Approximate Response of a Non-linear Vibration Isolation System Using the Harmonic Balance Method)

  • 이건명
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.124-129
    • /
    • 2018
  • A non-linear vibration isolation system which is composed of a non-linear spring and a linear damper was proposed in past research. When the support of the isolation system is excited harmonically, the response component of the isolation system mass at the excitation frequency has been calculated approximately using the harmonic balance method. The response was approximated by a single mode, and the result was compared with a numerical result which is assumed as an accurate one. Next, the response was approximated by two modes, and the result was compared with the former one.