• 제목/요약/키워드: Vibration Evaluation

Search Result 1,897, Processing Time 0.026 seconds

The Organization of Interface for safety and reliability of Urban Maglev Third rail System (도시형 자기부상열차 제3궤조 전차선로의 안전성 및 신뢰성 확보를 위한 인터페이스 정립)

  • Min, Byong-Chan;Cho, Sang-Hoon;Heo, Young-Tae;Hong, Du-Young;Kim, Chang-Hwan;Jeong, Nam-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1189-1194
    • /
    • 2011
  • The Maglev train is operated by levitating from a power of a large number of magnets and moving without direct contact to railway track so that reduces noise and vibration due to mechanical friction. Also, the Maglev passes sharp curves and steep hill without any difficulties. The Maglev has a potential to be an alternative transport system urban areas. For successful commercializing of Maglev, the organization of interface for safety and reliability of third rail system are one of the key considerations. Especially, the components of the third rail system, such as power rail, expansion joints, FRP section insulator, and supporter with epoxy insulator, should be durable, convenient for construction, and easy to maintenance. This paper analyzes the characteristics of the third rail system components and proposes organization of interface for system engineering. The operating tests of KIMM for the proposed third rail system verify the safety. Also, this paper analyzes the life cycle of the system components to improve the system reliability and evaluation.

  • PDF

Variability of Mid-plane Symmetric Functionally Graded Material Beams in Free Vibration (중립면 대칭 기능경사재료 보의 자유진동 변화도)

  • Nguyen, Van Thuan;Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.127-132
    • /
    • 2018
  • In this paper, a scheme for the evaluation of variability in the eigen-modes of functionally graded material(FGM) beams is proposed within the framework of perturbation-based stochastic analysis. As a random parameter, the spatially varying elastic modulus of FGM along the axial direction at the mid-surface of the beam is chosen, and the thru-thickness variation of the elastic modulus is assumed to follow the original form of exponential variation. In deriving the formulation, the first order Taylor expansion on the eigen-modes is employed. As an example, a simply supported FGM beam having symmetric elastic modulus with respect to the mid-surface is chosen. Monte Carlo analysis is also performed to check if the proposed scheme gives reasonable outcomes. From the analyses it is found that the two schemes give almost identical results of the mean and standard deviation of eigen-modes. With the propose scheme, the standard deviation shape of respective eigen-modes can be evaluated easily. The deviated mode shape is found to have one more zero-slope points than the mother modes shapes, irrespective of order of modes. The amount of deviation from the mean is found to have larger values for the higher modes than the lower modes.

Dynamic Analyses on Embedded Piles Based on Wave Equation (파동방정식에 근거한 매입말뚝의 동적 분석)

  • Seo, Mi-Jeong;Park, Jong-Bae;Park, Yong-Boo;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.5-13
    • /
    • 2015
  • For the bearing capacity evaluation, dynamic pile tests instead of static pile tests have been commonly used in embedded piles, which are known to have low noise and low vibration construction method. The objective of this study is to analyze the bearing capacity and penetration behaviors of embedded piles, which are constructed in different ground conditions, by using force and velocity signals obtained in the final blows during construction of embedded piles. For the dynamic pile analyses, the CAse Pile Wave Analysis Program (CAPWAP) and Wave Equation Analysis of Piles (WEAP) have been commonly used. In this study, the CAPWAP and WEAP are used for the analyses of the dynamic pile tests, which are conducted on embedded piles. The input values, output values, and force-velocity graphs of CAPWAP determined by analyzing the measured force-velocity signals are investigated. In addition, similar force-velocity singals are obtained from the WEAP by analyzing the input values of the WEAP. Considering the subsurface investigation results around the pile tips, if the N-value increases exponentially along the depth, toe quake value should be small, and therefore large bearing capacity is identified. On the contrary, if the N-value increases linearly, the bearing capacity is small because of large toe quake value. Furthermore, the stiffness of hammer cushion and pile cushion, which is difficult to find correct values, is recommended lower than 500 kN/mm. This study demonstrates that the results of WEAP may be similar to those of CAPWAP and the WEAP can be used to estimate the bearing capacity of embedded piles.

Evaluation of Cave-in Possibility of a Shallow Depth Rock Tunnel by Rock Engineering Systems and Uumerical Analyses (암반공학시스템과 수치해석을 이용한 저심도 암반터널에서의 붕락 발생 가능성 평가)

  • Kim, Man-Kwang;Yoo, Young-Il;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.236-247
    • /
    • 2009
  • Overpopulation has significantly increased the use of underground spaces in urban areas, and led to the developments of shallow-depth underground space. Due to unexpected rock fall, however, it is very necessary to understand and categorize the rock mass behaviors prior to the tunnel excavation, by which unnecessary casualties and economic loss could be prevented. In case of cave-in, special attention should be drawn since it occurs faster and greater in magnitude compared to rock fall and plastic deformation. Types of cave-in behavior are explained and categorized using seven parameters - Uniaxial Compressive Strength (UCS), Rock Quality Designation (RQD), joint surface condition, in-situ stress condition, ground water condition, earthquake & ground vibration, tunnel span. This study eventually introduces a new index called Cave-in Behavior Index (CBI) which explains the behavior of cave-in under given in-situ conditions expressed by the seven parameters. In order to assess the mutual interactions of the seven parameters and to evaluate the weighting factors for all the interactions, survey data of the experts' opinions and Rock Engineering Systems (RES) were used due to lack of field observations. CBI was applied to the tunnel site of Seoul Metro Line No. 9. UDEC analyses on 288 cases were done and occurrences of cave-in in every simulation were examined. Analyses on the results of 288 cases of simulations revealed that the average CBI for the cases when cave-in for different patterns of tunnel support was estimated by a logistic regression analysis.

Quantitative Analysis of Glottal Cycles According to Frequency and Intensity Variations in Normal Speakers (발성의 강도와 주파수 변화에 따른 성대 움직임의 정량적 분석)

  • Young-Ik Son;Kyungah Lee;Jun-Sun Ryu;Chung-Hwan Baek
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.8 no.1
    • /
    • pp.5-11
    • /
    • 1997
  • To set up an objective basis for the evaluation of the stroboscopic findings, video-strobolaryngoscopic images of vocal fold vibration in 5 female and 5 male normal speakers were analyzed using an image analysis computer program called KSIP(Kay Storoboscopy Image Processing, Kay Elemetrics Corp., NJ, USA). Four consecutive vibratory cycles were compared in comfortable, louder, high-pitched /ee/ phonation for every subject. findings mostly replicated earlier studies including glottal chinks which were observed in most female speakers throughout the cycles and clear distinction between female and male speakers in their vibratory patterns as well as intensity and frequency-re-lated differences. However, there were some findings incompatible with those from previous studies which may be attributable to technical problems. This study may provide an objective basis of the stroboscopic findings such as image shape, amplitude, area, and their changes according to frequency and intensity variations. We anticipate that funker study with larger samples ran provide an objective criteria for normal vibratory characteristics of the laryngostro-boscopic findings.

  • PDF

Development of Improvement Technology for Achieving Higher Throughput Limit Utilized in the Evaluation of Next Generation Dry Pumps (첨단공정용 드라이펌프 유량 측정 한계 향상기술 개발)

  • Shin, J.H.;Ko, M.K.;Cheung, W.S.;Yun, J.Y.;Lim, J.Y.;Kang, S.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.411-417
    • /
    • 2009
  • The constant volume flow meter system (the chamber volume in the 22 L class) was developed to estimate the pumping speed of the dry pump used for the industry of the next generation semiconductor and display. In order to insure the validity of the system, The base pressure and the leak rate in the enclosed system were checked, which were the $6{\times}10^{-8}\;mbar$ and $1.5{\times}10^{-6}\;mbar-L/s$, respectively. Furthermore, it is also confirmed that the value of throughput limit in this system was as much as 1 order of magnitude lower than that in a previously developed system in the 875 L class. By using this developed system, the pumping speed of the new small dry pump was measured. It is believed that the new developed system can be alternating the expensive constant pressure flow meter system in the range of $1{\times}10^{-2}\;mbar-L/s{\sim}1{\times}10^{-3}\;mbar-L/s$.

A Evaluation Method for the Effectiveness of Anti-snore Pillow (코골이 방지 베개의 효율성 검증을 위한 방법)

  • Jee, Duk-Keun;Wei, Ran;Im, Jae-Joong;Kim, Hee-Sun;Kim, Hyun-Jeong
    • Science of Emotion and Sensibility
    • /
    • v.14 no.4
    • /
    • pp.545-554
    • /
    • 2011
  • In this study, the parameters of Polysomnography (PSG) test, such as total sleep time, snoring time, had been analyzed to evaluate the effectiveness of a developed anti-snore pillow. The developed anti-snore pillow is made up of two polyvinylidene fluoride (PVDF) vibration sensors, pumps, valves, and air bladders. The two PVDF sensors inside the pillow can acquire the sound signals and the algorithm was perfectly designed to extract snoring by removing unwanted noise accurately and automatically. Once the pillow recognizes snore, a pump inside the hardware activates, and a bladder under the neck area inside the pillow will be inflated. The PSG test was used and two volunteers were participated for the study. The parameters of the PSG results were analyzed to evaluate the effectiveness of the anti-snore pillow. The total sleep time of each volunteer was similar on each phase of test, but the snoring time and the longest snoring episode were significantly decreased with the use of anti-snore pillow. The overall results showed excellent possibilities for reducing snoring for the person who snores during sleep by using the anti-snore pillow. The effectiveness of the anti-snore pillow can be evaluated by the PSG test. Moreover, the relationship between each parameter of PSG test and the quality of sleep will be used for further researches.

  • PDF

Study on the Dynamic Load Monitoring Using the Instrumented Vehicle (계측장치 실장 차량을 이용한 동적 하중 모니터링 연구)

  • Kim, Jong-Woo;Jung, Young-Woo;Kwon, Soon-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.95-107
    • /
    • 2016
  • The axle weight of a vehicle in motion can be measured with a low-speed or high-speed weigh-in-motion (WIM). However, the axial load dynamically change depending on the vehicle's characteristics-such as the chassis or axle structure-or the characteristics of the driving environment such as road flatness. The changes in dynamic load lead to differences between the vehicle's weight measured at rest and the vehicle's weight measured in motion. For this Study, an experiment was conducted with an instrumented vehicle to analyze the range of errors caused by uncontrollable environmental factors by identifying the characteristics of the dynamic load changes of a vehicle in motion, and determine the appropriate scale for the accuracy evaluation of a high-speed WIM, as a preparatory research for the introduction of unmanned overweight enforcement systems in the future. The key findings from the experiment are summarized as follows. First, The gross weight of the tested vehicle changed by approximately 1% at low velocities and approximately by 4% at high velocities, and the vehicle's axle weight changed by approximately 1-3%, at low velocities and by 2-9% at high velocities. A single axle showed larger weight changes than individual axles in a group. Secondly, The vehicle's gross weight and the axle weight on the impact section were up to eight times and three-to-twelve times higher, respectively, than its gross weight and the axle weight on the flat section. The vibration frequency of the vehicle's dynamic load was measured at between 2.4 and 5.8Hz, and found to return to the normal amplitude after moving approximately 30 meters.

Development and Evaluation of the Road Energy Harvester Using Piezoelectric Cantilevers (압전 캔틸레버 구조를 이용한 도로용 에너지 하베스터의 개발 및 평가)

  • Kim, Chang-Il;Kim, Kyung-Bum;Jeon, Jong-Hac;Jeong, Young-Hun;Cho, Jeong-Ho;Paik, Jong-Hoo;Kang, In-Seok;Lee, Moo-Yong;Choi, Beom-Jin;Cho, Young-Bong;Park, Shin-Seo;Nahm, Sahn;Lee, Young-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.511-515
    • /
    • 2012
  • A road energy harvester was designed and fabricated to convert mechanical energy from the vehicle load to electrical energy. The road energy harvester is composed of 24 piezoelectric cantilevers and a vehicle load transfer mechanism. Applying a vehicle load transfer mechanism rather than directly installing energy harvesters under roads decreases the area of road construction and allows more energy harvesters to be installed on the side of the road. The power generation amount with respect to the vehicular velocity change was assessed by installing the vehicle load transfer mechanism and the energy harvester in the form of speed bumps and underground. The energy harvester installed in a speed bump form generated power of 7.61 mW at the vehicular velocity of 20 km/h. Also, power generation of the energy harvester installed in the underground form was 63.9 mW at the vehicular velocity of 28 km/h. Although the number of piezoelectric cantilevers was reduced by 1/3 to 24 in comparison to the previous research results with 72 piezoelectric cantilevers, similar power generation characteristic value was obtained within the vehicular velocity of 20 km/h by altering the vehicle load transfer mechanism and cantilever vibration method.

Output-Only System Identification and Model Updating for Performance Evaluation of Tall Buildings (초고층건물의 성능평가를 위한 응답의존 시스템판별 및 모델향상)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.19-33
    • /
    • 2008
  • Dynamic response measurements from natural excitation were carried out for 25- and 42-story buildings to evaluate their inherent properties, such as natural frequencies, mode shapes and damping ratios. Both are reinforced concrete buildings adopting a core wall, or with shear walls as the major lateral force resisting system, but frames are added in the plan or elevation. In particular, shear walls in a 25-story building are converted to frames from the 4th floor level downwards while maintaining a core wall throughout, resulting in a fairly complex structure. Due to this, along with similar stiffness characteristics in the principal directions, significantly coupled and closely spaced modes of motion are expected in this building, making identification rather difficult. By using various state-of-the-art system identification methods, the modal parameters are extracted, and the results are then compared. Three frequency-domain and four time-domain based operational modal identification methods are considered. Overall, all natural frequencies and damping ratios estimated from the different identification methods showed a greater consistency for both buildings, while mode shapes exhibited some degree of discrepancy, varying from method to method. On the other hand, in comparison with analysis results obtained using the initial finite element(FE) models, test results exhibited a significant difference of about doubled frequencies, at least for the three lower modes in both buildings. To improve the correlation between test and analysis, a few manual schemes of FE model updating based on plausible reasons have been applied, and acceptable results are obtained. The advantages and disadvantages of each identification method used are addressed, and some difficulties that might arise from the updating of FE models, including automatic procedures, for such large structures are carefully discussed.