DOI QR코드

DOI QR Code

Study on the Dynamic Load Monitoring Using the Instrumented Vehicle

계측장치 실장 차량을 이용한 동적 하중 모니터링 연구

  • Received : 2016.09.06
  • Accepted : 2016.10.11
  • Published : 2016.10.31

Abstract

The axle weight of a vehicle in motion can be measured with a low-speed or high-speed weigh-in-motion (WIM). However, the axial load dynamically change depending on the vehicle's characteristics-such as the chassis or axle structure-or the characteristics of the driving environment such as road flatness. The changes in dynamic load lead to differences between the vehicle's weight measured at rest and the vehicle's weight measured in motion. For this Study, an experiment was conducted with an instrumented vehicle to analyze the range of errors caused by uncontrollable environmental factors by identifying the characteristics of the dynamic load changes of a vehicle in motion, and determine the appropriate scale for the accuracy evaluation of a high-speed WIM, as a preparatory research for the introduction of unmanned overweight enforcement systems in the future. The key findings from the experiment are summarized as follows. First, The gross weight of the tested vehicle changed by approximately 1% at low velocities and approximately by 4% at high velocities, and the vehicle's axle weight changed by approximately 1-3%, at low velocities and by 2-9% at high velocities. A single axle showed larger weight changes than individual axles in a group. Secondly, The vehicle's gross weight and the axle weight on the impact section were up to eight times and three-to-twelve times higher, respectively, than its gross weight and the axle weight on the flat section. The vibration frequency of the vehicle's dynamic load was measured at between 2.4 and 5.8Hz, and found to return to the normal amplitude after moving approximately 30 meters.

주행 차량의 축하중은 저속 혹은 고속 축중기(WIM)에 의하여 측정 할 수 있으나, 주행 차량의 샤시, 축 구조 등과 같은 차량 고유 특성과 주행 속도, 도로의 평탄도 등과 같은 주행 환경 특성에 따라 동적으로 변화하며, 이러한 순간적인 동적 하중 변화에 의해 정적 상태에서 측정된 기준 중량과 오차가 발생하게 된다. 본 연구에서는 향후 무인 과적단속 체계 도입에 앞서, 주행 차량의 동적 하중 변화 특성을 파악하여 통제 불가능한 환경적 기본 오차의 범위에 대해 분석하고, 고속 축중기의 중량정확도 성능평가 기준에 대한 척도를 적절히 설정하기 위한 실차 시험을 수행하였으며, 주요 시험 결과는 다음과 같다. 첫째, 총중량의 경우 저속일 때 약 1%, 고속일 때 약 4%의 변화가 나타났고, 축하중의 경우 저속일 때 약 1-3%, 고속일 때 약 2-9%의 변화가 나타났으며, 이러한 현상은 단일축보다 그룹내 개별축에서 더 크게 나타났다. 둘째, 정상 평탄도 구간에 비해 충격 구간에서는 총중량의 경우 최대 약 8배, 축하중의 경우 최대 약 3~12배의 변화가 나타났으며, 이러한 동적 하중 변화의 진동 주파수는 2.4-5.8Hz로 나타났으며, 약 30m를 주행한 후에 정상 상태의 진폭으로 수렴하는 것으로 분석되었다.

Keywords

References

  1. Korea Expressway Corporation(2012), "Status of overweight trucks on expressway," Korea Expressway Corporation.
  2. COST323(2002), Weigh-In-Motion road vehicle : Final report of the COST323 Action 1993-1998, eds. Jacob, E.J. O, Brien and Jehaes, LCPC, Boulevard Lefebvre, Paris.
  3. Davis, L. and Bunker, J.(2007), Heavy Vehicle Suspensions - Testing and Analysis. A literature review, Brisbane, Queensland : Queensland Department of Main Roads; Queensland University of Technology.
  4. State of Queensland (Department of Main Roads) & Queensland University of Technology(2009), "Suspension testing of 3 heavy vehicles - dynamic wheel force analysis Report," pp.32-33.
  5. Matti H.(2002), "Instrumeted Vehicle and its use for calibration of WIM-systems," 7th INternational Symposium on heavy vehicle weights & Dimensions, Delft The Netherlands, June 16-20, 2002.
  6. ASTM E1318-09(2014), Standard Specification for Highway Weigh-In-Motion (WIM) Systems with User Requirements and Test Methods, pp.13-14.
  7. Kim, J. H.(2010), "Development and Evaluation of High Speed weigh-in-motion system," Journal of the Korean Society of Road Engineers, vol. 12, no. 3, pp.17-28.