• Title/Summary/Keyword: Vibration Equation

Search Result 1,524, Processing Time 0.03 seconds

Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.347-360
    • /
    • 2017
  • The goal of this study is to fill this apparent gap in the area about vibration analysis of multiwalled carbon nanotubes (MWCNTs) curved panels by providing 3-D vibration analysis results for functionally graded multiwalled carbon nanotubes (FG-MWCNTs) sandwich structure with power-law distribution of nanotube. The effective material properties of the FG-MWCNT structures are estimated using a modified Halpin-Tsai equation. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. Also, the mass density and Poisson's ratio of the MWCNT/phenolic composite are considered based on the rule of mixtures. Parametric studies are carried out to highlight the influence of MWCNT volume fraction in the thickness, different types of CNT distribution, boundary conditions and geometrical parameters on vibrational behavior of FG-MWCNT thick curved panels. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary conditions including Free, Simply supported and Clamped at the curved edges. For an overall comprehension on 3-D vibration analysis of sandwich panel, some mode shape contour plots are reported in this research work.

Free vibration analysis of non-prismatic beams under variable axial forces

  • Saffari, H.;Mohammadnejad, M.;Bagheripour, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.561-582
    • /
    • 2012
  • Despite popularity of FEM in analysis of static and dynamic structural problems and the routine applicability of FE softwares, analytical methods based on simple mathematical relations is still largely sought by many researchers and practicing engineers around the world. Development of such analytical methods for analysis of free vibration of non-prismatic beams is also of primary concern. In this paper a new and simple method is proposed for determination of vibration frequencies of non-prismatic beams under variable axial forces. The governing differential equation is first obtained and, according to a harmonic vibration, is converted into a single variable equation in terms of location. Through repetitive integrations, integral equation for the weak form of governing equation is derived. The integration constants are determined using the boundary conditions applied to the problem. The mode shape functions are approximated by a power series. Substitution of the power series into the integral equation transforms it into a system of linear algebraic equations. Natural frequencies are determined using a non-trivial solution for system of equations. Presented method is formulated for beams having various end conditions and is extended for determination of the buckling load of non-prismatic beams. The efficiency and convergence rate of the current approach are investigated through comparison of the numerical results obtained to those obtained using available finite element software.

Historical Background for Derivation of the Differential Equation mẍ+kx = f(t) (미분방정식 mẍ + kx = f(t)의 역사적 유도배경)

  • Park, Bo-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.4
    • /
    • pp.315-324
    • /
    • 2011
  • This paper presents a historical study on the derivation of the differential equation of motion for the single-degree-of-freedom m-k system with the harmonic excitation. It was Euler for the first time in the history of vibration theory who tackled the equation of motion for that system analytically, then gave the solution of the free vibration and described the resonance phenomena of the forced vibration in his famous paper E126 of 1739. As a result of the chronological progress in mechanics like pendulum condition from Galileo to Euler, the author asserts two conjectures that Euler could apply to obtain the equation of motion at that time.

Development of Empirical Equations for Estimating the Train-Induced Ground Vibration (철도연변 지반 진동 Data Base 구축을 통한 지반진동예측 실험식)

  • 황선근;고태훈;엄기영;오상덕
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1022-1027
    • /
    • 2001
  • In this study, the train-induced vibration was measured at many locations at/around the actual service lines and the data base was constructed using the measurement results. The characteristics of train induced ground vibration was categorized and the empirical ground vibration estimating equations were developed. On the ground area (level grounds, embankments, cut sections), the vibration estimating equations were developed in terms of ground vibration level which was related with the distance from the source. Especially for the cut section areas, the vibration levels were expressed with the vibration receiving point expressed by the ratio of vertical distance to horizontal distance(V/H) from the source. As a result, when V/H is 0.96, the vibration estimating equation gives a minimum vibration level.

  • PDF

Vibration of Elevator Rope with a Spring-mass System at the Tip (끝 단에 스프링-질량계가 연결된 엘리베이터 로프의 진동)

  • Kwak, Moon K.;Han, Sangbo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • This study is concerned with the free vibration analysis of an inextensible uniform rope with a spring-mass system at the tip. The rope is hanged vertically in a gravitational field. This problem is related to the free vibration of an elevator rope connected to an elevator cage. The equation of motion and the corresponding boundary conditions are derived by using the Hamilton's principle. The general solution of the governing equation of motion is expressed in terms of Bessel functions. The characteristic equation was derived by applying the boundary conditions. The characteristic values which are in fact non-dimensionalized natural frequencies were obtained numerically. The effects of mass and spring constant were investigated. The numerical results show how the tip mass and spring affect the natural frequencies of the rope.

Development an Empirical Formula for the Friction Coefficient of a Circular Friction Damper (원형 마찰 감쇠기 특성의 실험식 개발)

  • Shin, Yong-Woo;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.491-498
    • /
    • 2011
  • The structural vibration due to earthquake or outside impact causes serious problem for building safety. A dynamic model of a friction damper which can be constructed and installed easily is needed to reduce the vibration of the building. In this paper, the experimental equation of a circular friction damper is derived and designed for reduction of a earthquake vibration of a building. The developed experimental equation is defined to simply design the capacity on design of the circular friction damper based on the results of the performance test. Finally this experimental equation can be used for the design of a circular friction damper.

Vibration Characteristics Analysis of a Piezoelectric Disc or Torsional Transducers (비틀림 진동 변환기용 압전 원판의 진동특성 해석)

  • Lee, Jung-Hyun;Kim, Jin-Oh
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1416-1421
    • /
    • 2005
  • This paper presents an analytical approach for the vibration characteristics of a piezoelectric disc for torsional vibration transducers. The characteristic equation of the piezoelectric annular disc has been derived from Gibbs' free energy equations and mechanical and electrical equilibrium. With an anisotropic material properties of the disc, the characteristic equation has yielded resonance frequencies. Numerically-calculated results have been compared with the results obtained by the finite element analysis and experiments and have confirmed the validity of the theoretical analysis.

The applications and conduct of vibration equations for constrained layered damped plates with impact

  • Luo, G.M.;Lee, Y.J.;Huang, C.H.
    • Steel and Composite Structures
    • /
    • v.8 no.4
    • /
    • pp.281-296
    • /
    • 2008
  • Visco-elastic material and thin metals were adhered to plate structures, forming the composite components that are similar to the sandwich plates, called constrained layered damped (CLD) plates. Constrained layer damping has been utilized for years to reduce vibration, and advances in computation and finite element analysis software have enabled various problems to be solved by computer. However, some problems consume much calculation time. The vibration equation for a constrained layered damped plate with simple supports and an impact force is obtained theoretically herein. Then, the results of the vibration equation are compared with those obtained using the finite element method (FEM) software, ABAQUS, to verify the accuracy of the theory. Finally, the 3M constrained layer damper SJ-2052 was attached to plates to form constrained layered damped plates, and the vibration equation was used to elucidate the damping effects and vibration characteristics.

Free Vibration Analysis of Beam-Columns on Elastic Foundation Using Differential Quadrature Method (DQM을 이용한 탄성지반 위에 놓인 보-기둥의 자유진동 해석)

  • 최규문;김무영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1005-1009
    • /
    • 2001
  • This paper deals with the free vibration analysis of beam-columns on elastic foundation using Differential Quadrature Method. Based on the dynamic equilibrium equation of a beam element acting the stress resultants and the inertia force, the governing differential equation is derived for the in-plane free vibration of such beam-columns. For calculating the natural frequencies, this equation is solved by the Differential Quadrature Method. It is expected that the results obtained herein can be used in application of Differential Quadrature Method to the field of civil engineering and practically in the structural engineering, the foundation engineering and the vibration control fields.

  • PDF

A Study on Adjustment of Prediction Equation for Natural Frequency Using the Simplification of Section Transformation Method of Composite Deck Plate Floor Systems (합성 데크 플레이트 바닥구조의 단면환산 단순화를 통한 고유진동수 예측식의 보정에 관한 연구)

  • 임지훈;김희철;홍원기
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.731-738
    • /
    • 2001
  • The conventional techniques for the prediction of natural frequency are often used to estimate the floor vibration. However. the predicted frequency differs significantly from the measured one since the predicted equation is not able to proper1y treat various material type. Transformation of slab section is necessary to predict natural frequency of composite deck plate, and this effort is complicated due to the various shape of each deck plate. In this study, a new simplified methodology to transform slab section is proposed, which treats effective depth as the distance from the top of a concrete topping to neutral axis of each deck plate. Finally proposed equation with fairly reasonable result compared to the measured values is obtained. based on the modification of vibration equation from LRFD theory. This efforts enhance errors in predicting frequency up to 15%.

  • PDF