• Title/Summary/Keyword: Vibration Energy Harvesting

Search Result 182, Processing Time 0.032 seconds

Fabrication of AlN piezoelectric micro power generator suitable with CMOS process and its characteristics (CMOS 공정에 적합한 AlN 압전 마이크로 발전기의 제작 및 특성)

  • Chung, Gwiy-Sang;Lee, Byung-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.209-213
    • /
    • 2010
  • This paper describes the fabrication and characteristics of AlN piezoelectric MPG(micro power generator). The micro energy harvester was fabricated to convert ambient vibration energy to electrical power as a AlN piezoelectric cantilever with Si proof-mass. To be compatible with CMOS process, AlN thin film was grown at low temperature by RF magnetron sputtering and micro power generators were fabricated by MEMS technologies. X-ray diffraction pattern proved that the grown AlN film had highly(002) orientation with low value of FWHM(full width at the half maximum, $\theta=0.276^{\circ}$) in the rocking curve around(002) reflections. The implemented harvester showed the $198.5\;{\mu}m$ highest membrane displacement and generated 6.4 nW of electrical power to $80\;k{\Omega}$ resistive load with $22.6\;mV_{rms}$ voltage from 1.0 G acceleration at its resonant frequency of 389 Hz. From these results, the AlN piezoelectric MPG will be possible to suitable with the batch process and confirm the possibility for power supply in portable, mobile and wearable microsystems.

Er(III)-chelated Prototype Complexes Based on Benzoate and Pentafluorobenzoate Ligands : Synthesis and Key Parameters for Near IR Emission Enhancement

  • Roh, Soo-Gyun;Oh, Jae-Buem;Nah, Min-Kook;Baek, Nam-Seob;Lee, Young-Il;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1503-1507
    • /
    • 2004
  • New synthetic methodology of the saturated and unsaturated Er(III)-chelated prototype complexes based on benzoate and pentafluorobenzoate ligands was developed through ligand-exchange reaction. The saturated 8-coordinated Er(III) complexes exhibit stronger near-IR emission than those of the unsaturated 6-coordinated Er(III) complexes, obtained from the direct photoexcitation of Er ions with 488 nm. Three $H_2O$ molecules coordinated in the unsaturated 6-coordinated complexes seriously quenched the near IR emission by the harmonic vibration relaxation decay of O-H bonds. Also, the stronger emission of the Er(III) complexes was obtained by the indirect photoexcitation of ligands than by the direct photoexcitation of the Er(III) ions, due to the energy transfer between the excited ligand and the erbium ion. Furthermore, the saturated Er(III)-chelated complex with C-F bonds shows much stronger near IR emission than that of the saturated Er(III)-chelated complex with C-H bonds. It is attributed to the influence of C-F bonds on near IR emission.

Design of a Piezocomposite Generating Element and Its Characteristics (압전-복합재료 발전 소자의 설계 및 특성)

  • Tien, Minh Tri;Kim, Jong-Hwa;Goo, Nam-Seo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.867-872
    • /
    • 2010
  • Unused energy derived from sources in nature can be captured and stored for future use, for example, to recharge a battery or power a device; this process of capturing and storing energy is called energy harvesting. Extensive investigations are being carried out in order to use piezoelectricity to harvest the energy generated by body movements or machine vibrations. This paper presents a simple analytical model that describes the output voltage effectiveness of a Piezocomposite Generating Element (PCGE) from vibration and its experimental verification. PCGE is composed of carbon/epoxy, PZT, and glass/epoxy layers. During the manufacturing process, the stacked layers were cured at $177^{\circ}C$ in an autoclave, which created residual stresses in PCGE and altered the piezoelectric properties of the PZT layer. In the experiments, three kinds of lay-up configurations of PCGE were considered to verify the proposed prediction model and to investigate its capability to convert oscillatory mechanical energy into electrical energy. The predicted performance results are in good agreement with observed experimental ones.

A Dual-Input Energy Harvesting Charger with MPPT Control (MPPT 제어 기능을 갖는 이중 입력 에너지 하베스팅 충전기)

  • Jeong, Chan-ho;Kim, Yong-seung;Jeong, Hyo-bum;Yang, Min-jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.484-487
    • /
    • 2015
  • This paper describes a dual-input battery charger with MPPT control using photovoltaic and piezoelectric energy. Each energy is harvested from photovoltaic cells and piezoelectric cells and is stored to each capacitor. The battery voltage is boosted by charger block and two energy sources are used as input to charge battery capacitor. A DC-DC boost converter is designed to boost the battery voltage, and inductor sharing technique is employed such that only one inductor is required. The time division ratio for piezoelectric cell and photovoltaic cell is set to 8:1. The proposed circuit is designed in a 0.35um CMOS process technology. The condition of battery capacitor is managed by battery management block and the battery voltage can be boosted up to 3V. The maximum efficiency of the designed entire system is 88.56%, and the chip area including pads is $1230um{\times}1330um$.

  • PDF

Proof-of-Concept of Magnetic Wheel-Based Magnetostrictive Energy Harvester (자석바퀴기반 자기변형 에너지하베스터의 개념증명)

  • Shin, Bong-Hi;Park, Young-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.483-490
    • /
    • 2015
  • This paper presents a proof-of-concept of a wheel-based magnetostrictive energy harvester (EH), which is a vibration-based EH. Coil-wound Galfenol cantilevers with two permanent magnets (PMs) act EH, while rotating wheels provide a forced vibration to EH. Four different cantilevers are designed and simulated for various end deflection. As expected from the simulation, the cantilever end deflection with triple cavity is the most. Three experiments are conducted to characterize the EH: the first with a magnetostrictive actuator, the second with a motor-driven wheel, and the third with the dummy weights. From the first experiment, the power reaches about 50 mV due to the relatively small displacement of the magnetostrictive actuator. From the second experiment, the power reaches about 120 mW. The power from the Galfenol cantilever is estimated to be about 60% of the total power from the wheel-based magnetostrictive EH.

Design method for the 2DOF electromagnetic vibrational energy harvester

  • Park, Shi-Baek;Jang, Seon-Jun
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.393-399
    • /
    • 2020
  • In this paper, the design method and experimental validation for the two-degree-of-freedom (2DOF) electromagnetic energy harvester are presented. The harvester consists of the rigid body suspended by four tension springs and electromagnetic transducers. Once the two resonant frequencies and the mass properties are specified, both the constant and the positions for the springs can be determined in the closed form. The designed harvester can locate two resonant peaks close to each other and forms the extended frequency bandwidth for power harvesting. Halbach magnet array is also introduced to enhance the output power. In the experiment, two resonant frequencies are measured at 34.9 and 37.6 Hz and the frequency bandwidth improves to 5 Hz at the voltage level of 207.9 mV. The normalized peak power of 4.587 mW/G2 is obtained at the optimal load resistor of 367 Ω.

Generating Characteristics of the Cymbal Type Piezoelectric Generator (Cymbal Type 압전 발전기의 발전 특성)

  • Jun, Ho-Ik;Jeoung, Sung-Su;Chong, Hyon-Ho;Park, Tae-Gone;Kim, Myung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.360-365
    • /
    • 2009
  • On this paper, piezoelectric generators using piezoelectric ceramics were designed and fabricated. Generators were made by attaching cymbal type metal plates on upper and bottom sides of a disc type piezoelectric ceramic. Generator converts wasting mechanical energy to electrical energy. Output voltage was increased when thickness of ceramic and displacement of vibration were increased. Temperature of the ceramic was increased when it generates, but the temperature rising was saturated at certain temperature.

Piezoelectric Generator Using Cymbal Type Transducer (Cymbal Type 트랜스듀서를 이용한 압전 발전 장치)

  • Jun, Ho-Ik;Jeoung, Sung-Su;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.169-170
    • /
    • 2008
  • On this paper, piezoelectric generators using piezoelectric ceramics were designed and fabricated. Generators were made by attaching cymbal type metal plates on upper and bottom sides of a disc type piezoelectric ceramic. Generator converts wasting mechanical energy to electrical energy. Output voltage was increased when thickness of ceramic and displacement of vibration were increased. Temperature of the ceramic was increased when it generates, but the temperature rising was saturated at certain temperature.

  • PDF

Design and Fabrication of Piezoelectric Generator Using Piezoelectric Ceramics (원판형 압전 세라믹을 이용한 압전 발전 장치의 설계 및 제작)

  • Jun, Ho-Ik;Jeoung, Sung-Su;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.315-316
    • /
    • 2008
  • On this paper, piezoelectric generators using piezoelectric ceramics were designed and fabricated. Generators were made by attaching cymbal type metal plates on upper and bottom sides of a disc type piezoelectric ceramic. Generator converts wasting mechanical energy to electrical energy. Output voltage was increased when thickness of ceramic and displacement of vibration were increased. Temperature of the ceramic was increased when it generates, but the temperature rising was saturated at certain temperature.

  • PDF

Self Power Generation from Vibration using Piezoelectric Bimorph Actuator (압전 바이몰프 액츄에이터의 진동에 따른 자가 발전특성)

  • Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Nahm, Sahn
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1071-1076
    • /
    • 2008
  • This paper presents the self power generation from vibration using the piezoelectric bimorph actuator. The piezoelectric bimorph actuator was well developed with PZT-PNN-Fe piezoelectric ceramics. As the applied voltage was increased, a linear change of displacement was obtained with a relatively high ratio of 12.53 um/V for the bimorph actuator. Moreover, when the motor's rotational speed was 2000 rpm, the bimorph actuator, which has a resonance frequency of 68 Hz, exhibited the most efficient generation voltage of 10.4 V. This bimorph actuator could make the LED, emitting 60 mW, working successfully. Therefore, it is anticipated that the bimorph actuator will be useful as a power source for the next-generation electronic devices.