• 제목/요약/키워드: Vibration Energy Harvester

검색결과 125건 처리시간 0.019초

교량 무선센서 전원공급용 전자기를 이용한 광대역 에너지 하베스트의 진동시스템에 관한 연구 (The research of energy harvester's the wideband vibration system from bridge for wireless sensor applications)

  • 한기봉;신동찬;김영철
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.819-824
    • /
    • 2012
  • This paper presents the wideband vibration system of an electromagnetic vibration energy harvester that obtained electric power for wireless sensor applications from the ever-change vibrations of bridge. It is a system with two degree of freedom vibrations that are composed of two mass and two spring respectively. One system is housing mass and spring, the other is the magnetic mass and spring that is the vibration system construction's element of electromagnetic vibration energy harvester. In other words, it is called dynamic vibration absorber. This paper show that the ratio of housing mass to magnetic mass decides the bandwidth and the size of amplitude of magnetic mass in electromagnetic vibration energy harvester. Therefore, it is necessary to improve the efficiency of energy in electromagnetic vibration energy harvester for wireless sensor applications.

  • PDF

극점-영점 상쇄 기법을 이용한 광대역 압전 진동 에너지 하베스터 (Broadband Piezoelectric Vibration Energy Harvester Using Pole-Zero Cancellation Technique)

  • 김기우
    • 한국소음진동공학회논문집
    • /
    • 제24권2호
    • /
    • pp.87-92
    • /
    • 2014
  • 이 논문에서는 기존 외팔보 빔 형상을 가진 진동 에너지 하베스터의 작동 주파수 범위를 공진 주파수 이후로 확장하기 위해 새로운 형태의 진동 에너지 하베스터가 제시되었다. 압전 재료를 사용한 기존 외팔보 빔 형상의 진동 에너지 하베스터에 레버형 반공진 시스템에서 발생하는 극점-영점 상쇄 기법을 적용하여 작동 주파수 영역을 확장하였다. 간단한 이론적 해석 및 실험을 통해 제안된 광역 압전 진동 에너지 하베스터의 실현 가능성을 검증하였다.

오픈소스 기반 빅데이터 플랫폼의 에너지 하베스터 최적설계 적용 연구 (Application of Open Source, Big Data Platform to Optimal Energy Harvester Design)

  • 유은섭;김석찬;이한민;문두환
    • 한국기계가공학회지
    • /
    • 제17권2호
    • /
    • pp.1-7
    • /
    • 2018
  • Recently, as interest in the internet of things has increased, a vibration energy harvester has attracted attention as a power supply method for a wireless sensor. The vibration energy harvester can be divided into piezoelectric types, electromagnetic type and electrostatic type, according to the energy conversion type. The electromagnetic vibration energy harvester has advantages, in terms of output density and design flexibility, compared to other methods. The efficiency of an electromagnetic vibration energy harvester is determined by the shape, size, and spacing of coils and magnets. Generating all the experimental cases is expensive, in terms of time and money. This study proposes a method to perform design optimization of an electromagnetic vibration energy harvester using an open source, big data platform.

Analysis and simulation of multi-mode piezoelectric energy harvesters

  • Zhang, Ying;Zhu, Binghu
    • Smart Structures and Systems
    • /
    • 제9권6호
    • /
    • pp.549-563
    • /
    • 2012
  • Theoretical analysis is performed on a multi-mode energy harvester design with focus on the first two vibration modes. Based on the analysis, a modification is proposed for designing a novel adaptive multi-mode energy harvester. The device comprises a simply supported beam with distributed mass and piezoelectric elements, and an adaptive damper that provides a 180 degree phase shift for the motions of two supports only at the second vibration mode. Theoretical analysis and numerical simulations show that the new design can efficiently scavenge energy at the first two vibration modes. The energy harvesting capability of the multi-mode energy harvester is also compared with that of a cantilever-based energy harvester for single-mode vibration. The results show that the energy harvesting capacity is affected by the damping ratios of different designs. For fixed damping ratio and design dimensions, the multi-mode design has higher energy harvesting capacity than the cantilever-based design.

파도를 이용한 광대역 진동에너지 하베스터에 대한 연구 (The research of wide band vibration energy harvester using ocean wave)

  • 한기봉;이형우
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.596-602
    • /
    • 2013
  • 기존의 진동에너지 하베스터는 한 주파수에서의 공진현상을 이용하여 에너지를 얻기 때문에 고정된 단일 주파수를 갖는 진동에너지로부터 전기에너지를 변환하는데 최적이지만 다양한 주파수를 포함하고 있는 파도와 같은 상하진동 에너지원으로부터 전기에너지를 얻는 데에는 한계가 있다. 본 논문에서는 이러한 단점을 해결하기위해 파도가 갖는 무한한 상하진동 에너지로부터 전기에너지를 얻는 광대역 진동에너지 하베스터를 연구하였다. 광대역 진동에너지 하베스터는 부양체와 진동에너지 하베스터가 각각 파도에너지가 갖는 중심주파수에서 공진이 발생되도록 구성되어있다. 그 결과 기존 공진을 이용한 진동에너지 하베스터는 한 주파수에서만 진동에너지를 전기에너지로 변환할 때 효율을 극대화할 수 있는 반면, 제안한 방법은 다양한 주파수를 포함하고 있는 파도에너지로부터 전기에너지로 변환할 때도 효율을 극대화 할 수 있는 장점을 가진다.

Design and Analysis of a Vibration-Driven Electromagnetic Energy Harvester Using Multi-Pole Magnet

  • Munaz, Ahmed;Chung, Gwiy-Sang
    • 센서학회지
    • /
    • 제21권3호
    • /
    • pp.172-179
    • /
    • 2012
  • This paper presents the design and analysis of a vibration-driven electromagnetic energy harvester that uses a multi-pole magnet. The physical backgrounds of the vibration electromagnetic energy harvester are reported, and an ANSYS finite element analysis simulation has been used to determine the different alignments of the magnetic pole array with their flux lines and density. The basic working principles for a single and multi-pole magnet are illustrated and the proposed harvester has been presented in a schematic diagram. Mechanical parameters such as input frequency, maximum displacement, number of coil turns, and load resistance have been analyzed to obtain an optimized output power for the harvester through theoretical study. The paper reports a maximum of 1.005 mW of power with a load resistance of $1.9k{\Omega}$ for 5 magnets with 450 coil turns.

A new broadband energy harvester using propped cantilever beam with variable overhang

  • Usharani, R.;Uma, G.;Umapathy, M.;Choi, S.B.
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.567-576
    • /
    • 2017
  • Design of piezoelectric energy harvester for a wide operating frequency range is a challenging problem and is currently being investigated by many researchers. Widening the operating frequency is required, as the energy is harvested from ambient source of vibration which consists of spectrum of frequency. This paper presents a new technique to increase the operating frequency range which is achieved by designing a harvester featured by a propped cantilever beam with variable over hang length. The proposed piezoelectric energy harvester is modeled analytically using Euler Bernoulli beam theory and the effectiveness of the harvester is demonstrated through experimentation. The results from analytical model and from experimentation reveal that the proposed energy harvester generates an open circuit output voltage ranging from 36.43 V to 11.94 V for the frequency range of 27.24 Hz to 48.47 Hz. The proposed harvester produces continuously varying output voltage and power in the broadened operating frequency range.

타원형 압전 에너지 하베스터의 기계적 모델링 연구 (Study of Mechanical Modeling of Oval-shaped Piezoelectric Energy Harvester)

  • 최재훈;정인기;강종윤
    • 센서학회지
    • /
    • 제28권1호
    • /
    • pp.36-40
    • /
    • 2019
  • Energy harvesting is an advantageous technology for wireless sensor networks (WSNs) that dispenses with the need for periodic replacement of batteries. WSNs are composed of numerous sensors for the collection of data and communication; hence, they are important in the Internet of Things (IoT). However, due to low power generation and energy conversion efficiency, harvesting technologies have so far been utilized in limited applications. In this study, a piezoelectric energy harvester was modeled in a vibration environment. This harvester has an oval-shaped configuration as compared to the conventional cantilever-type piezoelectric energy harvester. An analytical model based on an equivalent circuit was developed to appraise the advantages of the oval-shaped piezoelectric energy harvester in which several structural parameters were optimized for higher output performance in given vibration environments. As a result, an oval-shaped energy harvester with an average output power of 2.58 mW at 0.5 g and 60 Hz vibration conditions was developed. These technical approaches provided an opportunity to appreciate the significance of autonomous sensor networks.

주파수 튜닝이 가능한 진동형 에너지 하베스터에 관한 연구 (A Study on Frequency Tunable Vibration Energy Harvester)

  • 이병철;정귀상
    • 센서학회지
    • /
    • 제23권3호
    • /
    • pp.202-206
    • /
    • 2014
  • The common vibration energy harvester effectively converts mechanical vibration to electric power at a specific resonance frequency that must match the ambient excitation frequency. The resonance frequencies of energy harvesters are fixed during the design process and could not be changed after fabrication. In this paper, we proposed the new frequency tuning which uses the rotatable spring in order to adjust the spring constants. By this tuning method, the resonance frequency of the system can simply be manipulated using spring rotation. The proposed energy harvester has been successfully tuned to a resonance frequency between 23 and 32 Hz. The experimental results demonstrated that the proposed energy harvester could generate a maximum output power of $60{\mu}W$ with an acceleration of 0.5 g ($1g=9.81m/s^2$), and that the resonance frequency of the harvester was able to tune approximately 31.4%. When the proposed harvester was attached to an automobile engine, the maximum open circuit voltage of 1.78 Vpp was produced at 700 rpm.

Realistic Circuit Model of an Impact-Based Piezoelectric Energy Harvester

  • Kim, Sunhee;Ju, Suna;Ji, Chang-Hyeon;Lee, Seungjun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제15권5호
    • /
    • pp.463-469
    • /
    • 2015
  • A vibration-based energy harvester and its equivalent circuit models have been reported. Most models predict voltage signals at harmonic excitation. However, vibrations in a natural environment are unpredictable in frequency and amplitude. In this paper, we propose a realistic equivalent circuit model of a frequency-up-converting impact-based piezoelectric energy harvester. It can describe the behavior of the harvester in a real environment where the frequency and the amplitude of the excitation vary arbitrarily. The simulation results of the model were compared with experimental data and showed good agreement. The proposed model can predict both the impact response and long term response in a non-harmonic excitation. The model is also very useful to analyze the performance of energy conversion circuitry with the harvester.