DOI QR코드

DOI QR Code

Design and Analysis of a Vibration-Driven Electromagnetic Energy Harvester Using Multi-Pole Magnet

  • Munaz, Ahmed (School of Electrical Engineering, University of Ulsan) ;
  • Chung, Gwiy-Sang (School of Electrical Engineering, University of Ulsan)
  • Received : 2012.03.12
  • Accepted : 2012.04.21
  • Published : 2012.05.31

Abstract

This paper presents the design and analysis of a vibration-driven electromagnetic energy harvester that uses a multi-pole magnet. The physical backgrounds of the vibration electromagnetic energy harvester are reported, and an ANSYS finite element analysis simulation has been used to determine the different alignments of the magnetic pole array with their flux lines and density. The basic working principles for a single and multi-pole magnet are illustrated and the proposed harvester has been presented in a schematic diagram. Mechanical parameters such as input frequency, maximum displacement, number of coil turns, and load resistance have been analyzed to obtain an optimized output power for the harvester through theoretical study. The paper reports a maximum of 1.005 mW of power with a load resistance of $1.9k{\Omega}$ for 5 magnets with 450 coil turns.

Keywords

References

  1. S. A. Jacobson and A. H. Epstein, "An informal survey of power MEMS", Proc. of int. Symp. on MicroMech. Eng., vol. 12, pp. 513-519, 2003.
  2. S. P. Beeby, R. N. Torah, M.J. Tudor, P. G. Jones, T. O. Donnell, C. R. Saha, and S. Roy, "A micro electromagnetic generator for vibration energy harvesting", J. Micromech. Microeng., vol. 17, pp.1257-1265, 2007. https://doi.org/10.1088/0960-1317/17/7/007
  3. T. Sterken, K. Baert, V. Hoof, Puers, G. Borghs, and P. Fiorini, "Comparative modeling for vibration scavengers", Sensors, vol. 3, pp. 1249- 1252, 2005.
  4. S. C. Yuen, J. M. Lee, W. J. Li, and P. H. Leong, "An AA-sized vibration-based micro-generator for wireless sensors", Proc. of IEEE Conf. on Pervasive Comput., vol. 6, pp. 64-72, 2007.
  5. B. P. Mann and N. D. Sims, "Energy harvesting from the nonlinear oscillation of magnetic levitation", J. of Soun & Vibration, vol. 319, pp. 515-530, 2009. https://doi.org/10.1016/j.jsv.2008.06.011
  6. V. B. Thomas and G. Troster, "Design and optimization of a linear vibration-driven electromagnetic micro-power generator", Sens. Actu. A, vol. 135, pp. 765-775, 2007. https://doi.org/10.1016/j.sna.2006.08.009
  7. S. Cheng and D. P. Arnold, "A study of a multi-pole magnetic generator for low-frequency vibration energy harvesting", J. Micromech. Microeng., vol. 20, no. 2, pp. 25015(1)- 25015(10), 2010.
  8. C. Cepnik, O. Radler, S. Rosenbaum, T. Strohla, and U. Wallrabe, ''Effective optimization of a electromagnetic energy harvester through direct computation of the electromagnetic coupling'', Sens. Actu. A, vol. 167, pp. 416-421, 2011. https://doi.org/10.1016/j.sna.2011.01.023
  9. Z. Dibin , S. P. Beeby, M. J. Tudor, and N. R. Harris, "A planner electromagnetic vibration energy harvester with a halbach array", Proc. of IEEE Conf. on Power MEMS., vol. 11, pp. 347-350, 2011.
  10. T. O. Donnell, C. Saha, S. Beeby, and J. Tudor, "Scaling effects for electromagnetic vibration power generator", Microsyst. Technol., vol. 13, no. 11-12, pp. 1637-1645, 2006.
  11. N. Awaja, D. Sood, and T. Vinay, "Design and analyses of electromagnetic micro-generator", Sens. Trans., vol. 103, pp. 109-121, 2009.

Cited by

  1. Dynamic Characteristics and Power Generation Performance Evaluation of Customized Energy Block Structures vol.36, pp.2, 2016, https://doi.org/10.12652/Ksce.2016.36.2.0197
  2. Application and Verification of Fully-Integrated Design Environment for Piezoelectric Energy Harvester vol.22, pp.5, 2013, https://doi.org/10.5369/JSST.2013.22.5.364