• Title/Summary/Keyword: Vibration Displacement

Search Result 1,642, Processing Time 0.027 seconds

A Technique for Vibration Measurement and Roundness Assessment of Rotating-axis using Camera Image (카메라 영상을 이용한 회전축 진동 측정 및 진원도 평가 방법)

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Park, Jin-Ho;Park, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.131-138
    • /
    • 2014
  • Vibration measurement of rotating shafts by installing sensors such as accelerometers or displacement sensors is costly and dangerous in some cases. As an alternative method, vibration measurement using camera images has been researched because sensor installation is not needed and displacement of a rotating shaft can be directly evaluated. This paper also suggests the enhanced technique applicable to the measurement of vibration of a large-scale rotating shaft. The concurrent methods based on camera images use marks, which are hardly applicable to rotating shafts. The proposed method measures vibration without any marks by evaluating shape errors. The working principle of the method is described and verified by a series of experiments.

Effects of hand vibration on involuntary muscle contraction

  • 박희석
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.394-398
    • /
    • 1994
  • The aim of the present study was to determine the influence of vibration frequency and muscle contraction level at constant vibration displacement amplitudes on a commonly observed motor response elicited by local vibratory stimulation, i.e., the Tonic Vibration Reflex (TVR). Vibration was applied to the distal tendons of the hand flexor muscles. Changes in activity of the hand flexor and extensor muscles were analyzed as a function of the vibration frequency (40-200 Hz), displacement amplitude(200.mu.m and 300.mu.m peak-to-peak), and the initial contraction level of the flexor muscles (0%, 10%, and 20% of the maximal voluntary contraction: MVC). The main results indicate that the TVR increases with vibration frequency up to 100-150 Hz and decreases beyond, and the TVR attains its maximum at 10% MVC. It appears that high frequency vibration tends to induce less muscle/tendon stress. Such a result is of particular importance for the design of handheld vibrating tools.

A Study on the Vibrational Reduction Evaluation and the Relative Displacement in the External Vibration of Precision Measuring System (초정밀 측정/가공 장비의 외부진동에 대한 상대변위의 추출과 진동성능 평가에 관한 연구)

  • 전종균;엄호성;김강부;원영재
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.1
    • /
    • pp.65-72
    • /
    • 2002
  • Generally, there are laser operating equipments( aligner, stepper) and electronic microscope( SEM, TEM) as a high precision manufacturing and inspection equipment in semiconductor production companies, precision examination and measuring laboratories. Mostly, these equipments are characterized by projection and target part. The relative displacements between projection and target part are dominant roles in vibrational problem in these precision equipments. These relative displacements are determined by the position of incoming vibration and the difference of vibration response in projection and target part. In this study, the allowable vibrational limits are suggested and the vibrational reduction plans are proposed by measurement and analysis of vibration phenomenon in the Clean Room in PDP(plasma display panel) production building. The vibration performance is evaluated by comparison relative displacements between projection and target part before/after the vibration isolation plan.

Parameter Studies for Measuring Vibration by Using Camera (카메라를 이용한 진동 측정 시 주요인자 분석)

  • Jeon, Hyeong-Seop;Choi, Young-Chul;Park, Jin-Ho;Park, Jong-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1033-1037
    • /
    • 2010
  • Accelerometer and laser vibrometers are widely used to measure vibration of structures like a building or piping. Recently, the research measuring vibration by using camera image is introduced. This method can measure multi-points simultaneously. Also, it is possible to measure in the long distance. When we measure the vibration using a camera, the parameter analysis is needed. Therefore, this paper took the experiment for the camera lens selection. An error by the camera images characteristic was theoretically analyzed and we verified through an experiment. And the accuracy of the method measuring the vibration displacement by using the camera images was analyzed.

Analysis and active control for wind induced vibration of beam with ACLD patch

  • Li, Jinqiang;Narita, Yoshihiro
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-417
    • /
    • 2013
  • The structural vibration suppression with active constrained layer damping (ACLD) was widely studied recently. However, the literature seldom concerned with the vibration control on flow-induced vibration using active constrained layer. In this paper the wind induced vibration of cantilevered beam is analyzed and suppressed by using random theory together with a velocity feedback control strategy. The piezoelectric material and frequency dependent viscoelastic layer are used to achieve effective active damping in the vibration control. The transverse displacement and velocity in time and frequency domains, as well as the power spectral density and the mean-square value of the transverse displacement and velocity, are formulated under wind pressure at variable control gain. It is observed from the numerical results that the wind induced vibration can be significantly suppressed by using a small outside active voltage on the constrained layer.

Characteristics of the Method to Predict Strain Responses from the Measurements of Displacement Responses (변위응답의 측정으로부터 변형률응답을 예측하는 방법의 특성)

  • Lee, Gun-Myung;Ko, Jae-Heung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.844-848
    • /
    • 2005
  • A method to predict the strain responses from the measurements of displacement responses is considered. The method uses a transformation matrix which is composed of a displacement modal matrix and a strain modal matrix. The method can predict strains at points where displacements are not measured as well as at displacement measuring points. One of the drawbacks of the strain prediction method is that the displacement responses must be measured at many points on a structure simultaneously. This difficulty can be overcome by measuring the FRFs between displacements at a reference point and other point in sequence with a two channel measuring equipment This procedure is based on the assumption that the characteristics of excitation applied to the structure do not vary with time.

  • PDF

Improvement for Response Delays of Displacement Magnifier in Jetting Dispenser (젯팅 디스펜서 변위확대장치의 응답지연 개선 연구)

  • Ha, Myeong-Woo;Lee, Kwang-Hee;Hong, Seung-Min;Lee, Chul-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.546-551
    • /
    • 2016
  • The objective of this study is to investigate the response delays between piezo-stack actuator and the displacement magnifier of jetting dispenser and to reduce its falling time in terms of displacement optimization. The dispenser is driven by the dual piezo-stack actuators with a hinge lever mechanism to precisely control flow rate of the working fluid (3000 cP). It is commonly found that piezo actuator-driven jetting dispensers involving viscous working fluids have displacement optimization problem for ideal performance. The response delay of the system is caused by the phenomenon that the displacement magnifier cannot exactly follow the motion of the piezo actuators. The response delay may lower the performance of the system due to the inaccurate discharge of working fluid or even damages to the system itself due to inharmonious motion of piezo actuators with lever system. To reduce its response delay, a new displacement profile obtained from displacement optimization is suggested; its performance is tested through finite element analysis; and experiments are carried out to verify the performance of the obtained displacement profile.

Vibration Exciter Design for Flow Resonance with a Displacement Estimator Using Strain Gage (스트레인 게이지 변위추정 센서를 사용한 유동공진 가진기 설계)

  • Nam, Yun-Su;Choe, Jae-Hyeok;Gang, Byeong-Ha
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1874-1881
    • /
    • 2002
  • Heat dissipation technology using the flow resonant phenomenon is a kind of a new concept in the heat transfer area. A vibration exciter is needed to enhance air flow mixing which has the natural shedding frequency of thermal system. A mechanical vibrating device for the air flow oscillation is introduced, which is driven by a moving coil actuator with a displacement estimator using strain gage. An analytical dynamic model for this mechanical vibration exciter is presented and its validity is checked by the comparison with experimental data. Values of some unknown system parameters in the analytic model are estimated through the system identification approach. Based on this mathematical model, the vibration exciter using strain displacement estimator is developed. During the experimental verification phase, it turns out the high modal resonant characteristics of a vibrating plate are a major barrier against obtaining a high bandwidth vibration exciter.

Wind-induced random vibration of saddle membrane structures: Theoretical and experimental study

  • Rongjie Pan;Changjiang Liu;Dong Li;Yuanjun Sun;Weibin Huang;Ziye Chen
    • Wind and Structures
    • /
    • v.36 no.2
    • /
    • pp.133-147
    • /
    • 2023
  • The random vibration of saddle membrane structures under wind load is studied theoretically and experimentally. First, the nonlinear random vibration differential equations of saddle membrane structures under wind loads are established based on von Karman's large deflection theory, thin shell theory and potential flow theory. The probabilistic density function (PDF) and its corresponding statistical parameters of the displacement response of membrane structure are obtained by using the diffusion process theory and the Fokker Planck Kolmogorov equation method (FPK) to solve the equation. Furthermore, a wind tunnel test is carried out to obtain the displacement time history data of the test model under wind load, and the statistical characteristics of the displacement time history of the prototype model are obtained by similarity theory and probability statistics method. Finally, the rationality of the theoretical model is verified by comparing the experimental model with the theoretical model. The results show that the theoretical model agrees with the experimental model, and the random vibration response can be effectively reduced by increasing the initial pretension force and the rise-span ratio within a certain range. The research methods can provide a theoretical reference for the random vibration of the membrane structure, and also be the foundation of structural reliability of membrane structure based on wind-induced response.

Enhancement of Displacement Resolution of Vibration Data Measured by using Camera Images (카메라 영상을 이용한 진동변위 측정 시 측정해상도 향상 기법)

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Han, Soon Woo;Park, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.716-723
    • /
    • 2014
  • Vibration measurement using image processing is a fully non-contact measurement method and has many application fields. The resolution of vibration data measured by image processing depends on the camera performance and is lower than that measured by accelerometers. This work discusses the method to increase resolution of vibration signal measured by image processing based on the image mosaic technique with a high-power lens. The working principle of resolution enhancement was explained theoretically and verified by several experiments. It was shown that the proposed method can measure vibrations of relatively large scale structures with increased resolutions.