• Title/Summary/Keyword: Vibrating sample magnetometer

Search Result 158, Processing Time 0.026 seconds

High Frequency Properties of Fe93.5Si6.5 Magnetic Powder/Epoxy Composite Film (Fe93.5Si6.5 자성분말/에폭시 복합재 필름의 고주파 특성)

  • Hong, Seon-Min;Kim, Cheol-Gi
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.195-199
    • /
    • 2008
  • Composites of $Fe_{93.5}Si_{6.5}$ powder and epoxy were prepared using a thermal curing process. Scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and network analyzer were used to analyze the structure, electromagnetic properties and microwave absorption of the composites. Results show that the saturation magnetization depends on the fraction of the $Fe_{93.5}Si_{6.5}$ powder in the composite, which affects initial permeability. It is believed that the eddy current loss is a dominant factor over 1 GHz and that the resonance frequency of the composite decreases with increasing fractions of $Fe_{93.5}Si_{6.5}$ powder. Finally, reflection loss was calculated from the permeability and permittivity of these composites. Composite with 50 wt.% $Fe_{93.5}Si_{6.5}$ powder fractions and 5 mm thickness showed reflection loss below -20 dB from 3.66 GHz to 4.16 GHz. Therefore, it is believed that thin Fe-Si/epoxy composites may be a good candidate for microwave absorption application.

The Study on Magnetic Properties of Transition Metal Doped Semiconductor (전이금속이 치환된 반도체 물질의 자기적 특성 연구)

  • Kim, Jae-Uk;Cha, Byung-Kwan;Ji, Myoung-Jin;Kwon, Tae-Phil;Park, Byoung-Cheon;Kyoung, Dong-Hyoun;Jin, Hoon-Yeol;Kim, Seung-Hoi;Kim, Jong-Gyu
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.766-770
    • /
    • 2010
  • This is the study of magnetic properties of transition metal doped diluted magnetic semiconductors(DMSs). The wurtzite structure samples were synthesized by the sol-gel method. The thermodynamic characteristics and magnetic properties of $Zn_{1-x}Co_xO$ single phase was investigated for different doping concentration (x = 0%, 1%, 2%, 3%, 4%, 5%, 10%, 15%). The property of diluted magnetic semiconductors has been comfirmed by X-ray diffraction (XRD), Scanning Electronic Microscope (SEM) and Vibrating sample magnetometer (VSM). The magnetic properties of pure $Zn_{1-x}Co_xO$ is found to be dominated by the ferromagnetic interaction between doped transition metal ions, where by the ferromagnetic coupling strength is simply increased with the concentration(>5%) of the doped transition metal.

Investigation of Mössbauer Spectra of Ba2Mg0.5Co1.5(Fe0.99In0.01)12O22 (Ba2Mg0.5Co1.5(Fe0.99In0.01)12O22의 뫼스바우어 분광 연구)

  • Lim, Jung-Tae;Kim, Chin-Mo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.19-22
    • /
    • 2012
  • $Ba_2Mg_{0.5}Co_{1.5}(Fe_{0.99}In_{0.01})_{12}O_{22}$ was prepared by the conventional solid-state reaction method, and studied by x-ray diffractometer, vibrating sample magnetometer, and Mossbauer spectrometer. The crystal structure was determined to be a single-phased rhombohedral with space group R-3m. Magnetization value were $M_s$ = 28.6 emu/g at 295 K. The hysteresis loops indicate that all the samples are ferrimagnetic behaviors. Mossbauer spectra of $Ba_2Mg_{0.5}Co_{1.5}(Fe_{0.99}In_{0.01})_{12}O_{22}$ have been 6-sextet taken at various temperatures ranging from 4.2 to 620 K. Based on the isomer shift (${\delta}$) values of all samples, the charge states were found to be $Fe^{3+}$ state at all temperatures, the Curie temperature was determined to be 630 K by the ZVC curve.

Hyperthermia Properties of Fe3O4 Nanoparticle Synthesized by Hot-injection Polyol Process (Hot-injection Polyol 공정에 의해 제조된 Fe3O4 나노입자의 Hyperthermia 특성)

  • Lee, Seong Noh;Kouh, Taejoon;Shim, In-Bo;Shim, Hyun Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.51-55
    • /
    • 2014
  • The $Fe_3O_4$ nanoparticle was synthesized by the hot-injection method while varying the injection time of the precursor solution. The crystal structure was determined to be cubic inverse spinel with space group of Fd-3m based on X-ray diffraction (XRD) measurements and the morphology of the prepared $Fe_3O_4$ nanoparticle was studied with a high-resolution transmission electron microscope (HR-TEM). When the precursor solution was injected for 0.5 min, the size of the $Fe_3O_4$ nanoparticle was 7.63 nm, while the size of the obtained particle was 21.27 nm with the injection time of 60 min. The magnetic properties of the prepared $Fe_3O_4$ nanoparticle were investigated by both vibrating sample magnetometer (VSM) and $^{57}Co$ M$\ddot{o}$ssbauer spectroscopy at various temperatures. From the hyperthermia measurement, we observed that the temperature of the $Fe_3O_4$ nanoparticle powder reached around $120^{\circ}C$ under 250 Oe at 50 kHz, when the injection time of the precursor solution was 60 min.

The Development of Fiber-Optic Hydrogen Gas Sensor for Non-Destructive Test Application (비파괴 검사 응용을 위한 광섬유 수소 가스 센서의 개발)

  • 윤의중;정명희
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.6
    • /
    • pp.380-387
    • /
    • 1998
  • In this paper, a sensor material with Fe/Zr multilayer thin film, in which the change in the magnetization and strain with hydrogenation is maximized, were developed. Compositionally modulated (CM) Fe/Zr multilayers with a $Fe_{80}Zr_{20}$ composition and modulation wavelengths ($\lambda$) $3~50{\AA}$ were deposited by sequentially sputtering (RF diode) elemental Fe and Zr targets. The films were electrolytically hydrogenated to select the optimum Fe/Zr multilayers that show the maximum increases in the magnetization and strain with hydrogenation. The changes in the magnetic properties of the thin films after hydrogenation, were measured using a hysteresis graph and a vibrating sample magnetometer (VSM), and the strains induced in the films by hydrogenation were also measured using a laser heterodyne interferometer (LHI). The optimum sensor material selected was incorporated in a fiber-optic hydrogen sensor (that can sense indirectly amount of hydrogen injected) by depositing it directly on the sensing arm of a single-mode fiber Michelson interferometer. The developed sensor holds significant promise for non-destructive test evaluation (NDE) applications because it is expected to be useful for detecting easily and accurately the subsurface corrosion in structural systems.

  • PDF

Electrical and Magnetic Properties of Magnetite Powder during a Verwey Transition (Verwey 전이와 마그네타이트의 전기적 및 자기적 특성)

  • Yoon, Sunghyun
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1302-1307
    • /
    • 2018
  • The crystallographic, electrical and magnetic behaviors of magnetite powder in the vicinity of its Verwey transition were investigated in this study. Magnetite was prepared by synthesizing a nanoparticle precursor and then annealing it at $800^{\circ}C$ for 1 h under a dynamic vacuum. Crystallographic and morphology analyses were done by using scanning electron microscope (SEM) and X-ray diffraction (XRD). The electrical and the magnetic properties were examined by using $M{\ddot{o}}ssbauer$ spectroscopy, vibrating sample magnetometer (VSM) and resistivity measurement. Both the magnetic moment and the resistivity showed discontinuous changes at the Verwey transition temperature ($T_V$). The temperature dependence of magnetic anisotropy constant showed a monotonic decrease with increasing temperature, with slight dip near $T_V$. $M{\ddot{o}}ssbauer$ spectra showed the superposition of two sextets, one from the tetrahedral (A) and the other from the octahedral (B) sites. The results revealed that identical charge states existed in the B site at temperatures both above and below $T_V$. A coordination crossover resulted in a transition from an inverse to a normal spinel at or close to $T_V$.

Temperature Dependent Cation Distribution in Tb2Bi1Ga1Fe4O12

  • Park, Il-Jin;Park, Chu-Sik;Kang, Kyoung-Soo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.110-113
    • /
    • 2008
  • In this study, heavy rare earth garnet $Tb_2Bi_1Ga_1Fe_4O_{12}$ powders were fabricated by a sol-gel and vacuum annealing process. The crystal structure was found to be single-phase garnet with a space group of Ia3d. The lattice constant $a_0$ was determined to be 12.465 ${\AA}$. From the analysis of the vibrating sample magnetometer (VSM) hysteresis loop at room temperature, the saturation magnetization and coercivity of the sample are 7.64 emu/g and 229 Oe, respectively. The N$\acute{e}$el temperature($T_N$) was determined to be 525 K. The M$\ddot{o}$ssbauer spectrum of $Tb_2Bi_1Ga_1Fe_4O_{12}$ at room temperature consists of 2 sets of 6 Lorentzians, which is the pattern of single-phase garnet. From the results of the M$\ddot{o}$ssbauer spectrum at room temperature, the absorption area ratios of Fe ions on 24d and 16a sites are 74.7% and 25.3%(approximately 3:1), respectively. These results show that all of the non-magnetic Ga atoms occupy the 16a site by a vacuum annealing process. Absorption area ratios of Fe ions are dependent not only on a sintering condition but also on the temperature of the sample. It can then be interpreted that the Ga ion distribution is dependent on the temperature of the sample. The M$\ddot{o}$ssbauer measurement was carried out in order to investigate the atomic migration in $Tb_2Bi_1Ga_1Fe_4O_{12}$.

Studies on Crystallographic and Magnetic Properties of the Sn0.9957Fe0.01O2 (Sn0.9957Fe0.01O2의 결정학적 및 자기적 성질에 관한 연구)

  • Li, Yong-Hui;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.187-190
    • /
    • 2010
  • $Sn_{0.99}{^{57}Fe}_{0.01}O_2$ prepared by a sol-gel method, and studied by x-ray diffractometer, vibrating magnetometer, Superconducting quantum interference devices and M$\ddot{o}$ssbauer spectroscopy. the crystal structure were found to be a rutile tetragonal structure with space group $P4_2$/mnm, and oxygen deficiency are 5.6 % by Rietveld refinement. magnetization value were $M_s=1.95{\times}10^{-2}{\mu}_B/Fe$ at room temperature, and Curri-weiss temperature were and ${\theta}_{cw}$ = 18 k, measurement of VSM and SQUID, respectively. Mssbauer spectra of $Sn_{0.99}{^{57}Fe}_{0.01}O_2$ have been Sextet taken at various temperatures ranging from 4.2 K to RT, and isomer shift value $\delta$ = 0.18~0.36 mm/s of $^{57}Fe$ ion site all of the temperature range the state shows ferric.

Synthesis and Magnetic Properties of Electrodeposited Cobalt-Iron-Vanadium Thin Films

  • Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.87-89
    • /
    • 2006
  • CoFeV thin film alloys were fabricated by electrodeposition, and the dependences of their magnetic properties on the current density were investigated using an X-ray diffractometer and a vibrating sample magnetometer. The deposited Co increased from about 45 to 60 wt.% with increasing current density until $25mA/cm^2$ whereas the deposited Fe decreased from about 55 to 40 wt.% with increasing current density until $25mA/cm^2$. The deposited V, about 2 wt.%, was independent of the current density. The current efficiencies of electrodeposition decreased linearly from about 40 to 29% with increasing current density. The X-ray diffraction measurement showed that all peaks of the CoFeV films were consistent with those of a typical Co hcp and Fe bcc mixed phase. An increase in the current density decreased the grain size and increased the lattice constant. The saturation magnetization increased from about 2.2 to 2.5 T with increasing current density. The coercivity measured in the perpendicular direction decreased from 260 to 120 Oe with increasing current density; a drastic drop of 60 Oe occurred at $5mA/cm^2$. The coercivity measured in the in-plane direction remained almost unchanged, at about 20 Oe, with increasing current density.

Spark Plasma Sintering Behaviors of M-type Barium Hexaferrite Nano Powders

  • Jung, Im Doo;Kim, Youngmoo;Hong, Yang-Ki;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.256-259
    • /
    • 2014
  • A magnetic powder, M-type barium hexaferrite (BaFe12O19), was consolidated with the spark plasma sintering process. Three different holding temperatures, $850^{\circ}C$, $875^{\circ}C$ and $900^{\circ}C$ were applied to the spark plasma sintering process with the same holding times, heating rates and compaction pressure of 30 MPa. The relative density was measured simultaneously with spark plasma sintering and the convergent relative density after cooling was found to be proportional to the holding temperature. The full relative density was obtained at $900^{\circ}C$ and the total sintering time was only 33.3 min, which was much less than the conventional furnace sintering method. The higher holding temperature also led to the higher saturation magnetic moment (${\sigma}_s$) and the higher coercivity ($H_c$) in the vibrating sample magnetometer measurement. The saturation magnetic moment (${\sigma}_s$) and the coercivity ($H_c$) obtained at $900^{\circ}C$ were 56.3 emu/g and 541.5 Oe for each.