• Title/Summary/Keyword: Viability Mechanism

Search Result 588, Processing Time 0.028 seconds

The Mechanism of Lotus Root Extract (LRE) as Neuro-Protective Effect in Alzheimer Disease (AD) (연근(蓮根)의 신경 보호 효과 및 기전연구)

  • Hong, Seung-Chul;Lee, Chia-Hung;Kim, Sang-Heon;Lee, Jin-Hee;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.24 no.3
    • /
    • pp.309-320
    • /
    • 2013
  • Objectives : There is a possibility LRE as remedy in Alzheimer disease (AD), but it's nerve protection effect and mechanism have to be elucidate. In this research, we applied LRE on $A{\beta}_{25-35}$ pre-treated SH-SY5Y cells, to find out the nerve protection effect and mechanism in AD cell model. Methods : We tried to confirm that effect by experimenting with 20, 50, and $100{\mu}g/ml$ concentration of LRE as a medicine. Next experiment, we assessed damage effect which induced $A{\beta}_{25-35}$, known to cause AD, on SH-SY5Y cell. In addition, cellular viability test is executed under $H_2O_2$ treatment condition in a SH-SY5Y cell. Results : 1. In $A{\beta}_{25-35}$ treated SH-SY5Y cell, LRE exhibited an anti-phosphorylation effect about tau protein, JNK, and IKB. 2. LRE prevent nerve cell apoptosis, which indued $A{\beta}_{25-35}$ and oxidative stress, modify JNK engaged synaptic structure and $NF{\kappa}B$ induced p75-neurotrophin receptor polymorphism. Conclusions : We found that LRE prevented oxidative stress-induced cellular destruction, for example, increased SOD activity of $A{\beta}_{25-35}$ treated SH-SY5Y cell and reduced toxicity of oxygen free radical. Consequently, the ingredients of LRE have a role as a catalyzer for $A{\beta}_{25-35}$ clearance and as scavenger for active oxygen free radical.

Effects of puerarin on the Akt signaling pathway in bovine preadipocyte differentiation

  • Yun, Jinyan;Yu, Yongsheng;Zhou, Guoli;Luo, Xiaotong;Jin, Haiguo;Zhao, Yumin;Cao, Yang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.4-11
    • /
    • 2020
  • Objective: Puerarin has the potential of regulating the differentiation of preadipocytes, but its mechanism of action has not yet been elucidated. Adipocytes found in adipose tissue, the main endocrine organ, are the main sites of lipid deposition, and are widely used as a cell model in the study of in vitro fat deposition. This study aimed to investigate the effects of puerarin on adipogenesis in vitro. Methods: Puerarin was added to the culture medium during the process of adipogenesis. The proliferation and differentiation of bovine preadipocytes was measured through cell viability and staining with oil red O. The content of triacylglycerol was measured using a triglyceride assay kit. The mRNA and protein expression levels of adipogenic genes, peroxisome proliferator-activated receptor-γ (PPARγ) and CCAAT/enhancer-binding protein-α, were measured using quantitative real-time polymerase chain reaction and western blotting, respectively. Results: The addition of puerarin significantly increased adipogenesis of bovine preadipocytes and enhanced the mRNA and protein level expression of PPARγ (p<0.01). The expression of P-Akt increased after adipogenic hormonal induction, whereas puerarin significantly increased PPARγ expression by promoting the Akt signaling component, P-Akt. The mechanism of adipogenesis was found to be related to the phosphorylation level of Ser473, which may activate the downstream signaling of the Akt pathway. Conclusion: Puerarin was able to promote the differentiation of preadipocytes and improve fat deposition in cattle. The mechanism of adipogenesis was found to be related to the phosphorylation level of Ser473.

trans-Cinnamaldehyde-Induced Apoptosis in AGS Cells (AGS 세포주에서 트랜스 신남알데하이드의 세포 사멸 유도)

  • Lee, Sunyi;Jung, Joohee
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.1
    • /
    • pp.100-104
    • /
    • 2021
  • trans-Cinnamaldehyde (TCA), as one of the active ingredients in cinnamon, has been reported to have antiviral, antibacterial and antifungal effects as well as anti-cancer effects in several cancer cell lines. However, reports of TCA in gastric cancer are rare, and its mechanism is unclear. In this study, we investigated the anti-proliferative effect of TCA and its mechanism in gastric cancer AGS cells. TCA dose-dependently inhibited the cell viability of AGS cells. Our results suggested that TCA induces apoptosis through changes in cell morphology. To elucidate its mechanism, we investigated the expression level of apoptosis-related proteins. TCA induced the expression of p53 and Bax proteins, and then increased the cleaved caspase 9 and cleaved PARP. These results indicated that TCA triggers apoptosis via p53 pathway in AGS cells. Our results suggested that TCA might be a new anticancer drug candidate for gastric cancer.

Effects of miR-155 Antisense Oligonucleotide on Breast Carcinoma Cell Line MDA-MB-157 and Implanted Tumors

  • Zheng, Shu-Rong;Guo, Gui-Long;Zhai, Qi;Zou, Zhang-Yong;Zhang, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2361-2366
    • /
    • 2013
  • Diverse studies have shown that miR-155 is overexpressed in different tumor types. However, the precise molecular mechanism of the ectopic expression of miR-155 in breast cancer is still poorly understood. To further explore the role of miR-155 in breast tumorigenesis, we here assessed the influence of miR-155 antisense oligonucleotide (miR-155 ASO) on MDA-MB-157 cell viability and apoptosis in vitro. Furthermore, the effects of inhibitory effects of miR-155 on the growth of xenograft tumors in vivo were determined with performance of immunohistochemistry to detect expression of caspase-3, a pivotal apoptosis regulatory factor, in xenografts. Transfection efficiency detected by laser confocal microscope was higher than 80%. The level of miR-155 expression was significantly decreased (P<0.05) in the cells transfected with miR-155 ASO, compared with that in cells transfected with a negative control. After being transfected with miR-155 ASO, the viability of MDA-MB-157 cells was reduced greatly (P<0.05) and the number of apoptotic cells was increased significantly. Additionally, miR-155 ASO inhibited the growth of transplanted tumor in vivo and significantly increased the expression of caspase-3. Taken together, our study revealed that miR-155 ASO can induce cell apoptosis and inhibit cell proliferation in vitro. Moreover, miR-155 ASO could significantly repress tumor growth in vivo, presumably by inducing apoptosis via caspase-3 up-regulation. These findings provide experimental evidence for using miR-155 as a therapeutic target of breast carcinoma.

The protective effects of Moxi-tar on injury induced by H2O2 in C6-glioma (H2O2로 유발된 뇌신경세포 상해에 대한 구진의 보호효과)

  • Ahn, Sung-hun;Koo, Sung-tae;Kim, Sun-young;Kim, Kyung-sik;Sohn, In-cheul
    • Journal of Acupuncture Research
    • /
    • v.21 no.3
    • /
    • pp.29-41
    • /
    • 2004
  • Objective : This study was produced to examine the effects of moxibustion that had been played important role to traditional oriental medical treatment on disease. Recently, it was reported that moxi-tar which is generated in the process of moxibustion as burning combustibles decreased NO and iNOS generation in C6-glioma and RAW 264.7 cells in our lab. Methods : C6-glioma cells were cultured in RPMI 1640 with FBS 10% in CO2 incubator. To study the protective effects of moxi-tar, we observed cell viability, DPPH activity, SOD activity, catalase activity and cell morphology after injury with $H_2O_2$. Results and Conclusions : Moxi-tar increased cell viability about twice as much as that of being injury by $H_2O_2$(moxi-tar $40{\mu}g/m{\ell}$, $H_2O_2$ $500{\mu}M$). And the results of free radical scavenger activity($80{\mu}g/m{\ell}$ : $78.91{\pm}4.4%$), SOD activity and catalase activity($80{\mu}g/m{\ell}$ : 21.6unit/mg protein) were increased by moxi-tar as dose-dependent manner. So we concluded that the effects of moxibustion which is played important role in Oriental medicine, might be free radical scavenger effects induced by moxi-tar. Conclusion : These results indicate that tBHP induces apoptosis through a lipid peroxidation-dependent mechanism and JS exerts the protective effect against the apoptosis by preventing peroxidation of membrane lipids.

  • PDF

The effects of Honey Bee Venom for Aqua-acupuncture on Expression of Genes Related with Inflammation and Pain (봉독(蜂毒) 약침액(藥鍼液)이 염증(炎症) 및 통증(痛症) 관련(關聯) 유전자(遺傳子) 발현(發現)에 미치는 영향(影響))

  • Jeong, Hye-Yoon;Koh, Hyung-Kyun
    • Journal of Acupuncture Research
    • /
    • v.19 no.3
    • /
    • pp.41-50
    • /
    • 2002
  • Objective : To study anti-inflammatory, analgesic effect and molecular biological mechanism of honey bee venom for aqua-acupuncture, human mast cell line(HMC-1) and human glioma cell line(HS683) were treated with bee venom. Methods : Cell viability of bee venom was tested by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) asssay. To explore whether anti-inflammatory, analgesic effects of bee venom are associated with the control of gene expression, quantitative RT-PCR analysis of inflammation and pain related genes was performed. Results : The MTT assay demonstrated that cell viability was not decreased by treatment with 10-9 ug/ml bee venom in comparison with 10-2, 10-3, 10-4, 10-5, 10-6, 10-7, 10-8, 10-9, 10-10 and 10-11 ug/ml. sPLA2 and COX-l were down-regulated by treatment with 10-9 ug/ml bee venom in HS683 Cell line in comparison with control. COX-2 was up-regulated by treatment with 10-9 ug/ml bee venom in HS683 Cell line and HSP-2 was up-regulated by treatment with 10-9 ug/ml bee venom in HMC-1 Cell line in comparison with control. sPLA2, COX-1 and COX-2 showed no significant regulation in HMC-1 Cell line and cPLA2 also showed no significant regulation in both HMC-l and HS683 Cell line between control and bee venom treated group.

  • PDF

Cytoprotective effects of kurarinone against tert-butyl hydroperoxide-induced hepatotoxicity in HepG2 Cells (HepG2 세포에서 tert-butyl hydroperoxide로 유도된 간독성에 대한 kurarinone의 세포 보호 효과)

  • Kim, Sang Chan;Lee, Jong Rok;Park, Sook Jahr
    • Herbal Formula Science
    • /
    • v.26 no.3
    • /
    • pp.251-259
    • /
    • 2018
  • Objective : Kurarinone is one of the flavonoids isolated from Sophorae Radix with various biological activities including anti-microbial effect. In this study, we investigated the effects of Kurarinone on tert-butyl hydroperoxide (tBHP)-induced oxidative stress finally leading to apoptosis in human hepatoma cell line HepG2. Methods : To determine the effects on cell viability, the cells were exposed to tBHP ($100{\mu}mol/l$) after pretreatment with kurarinone (0.5 and $1{\mu}g/ml$). Cell viability was measured by MTT assay. To reveal the possible mechanism of cytoprotectivity of kurarinone, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, and expression of caspase were examined. Results : tBHP-induced cell death was due to oxidative stress and the resulting apoptosis. Kurarinone dose-dependently protected cells from apoptosis when determined by MTT and TUNEL assay. Consistent with this observation, decreased expression of pro-caspase 3/9 protein by tBHP was restored by kurarinone. Kurarinone also showed anti-oxidative effects by inhibiting generation of ROS and depletion of GSH in tBHP-stimulated HepG2 cells. In addition, kurarinone significantly recovered disruption of mitochondrial membrane potential (MMP) as a start sign of hepatic apoptosis induced by oxidative stress. Conclusion : From these results, it was concluded that kurarinone protected tBHP-induced hepatotoxicity with anti-oxidative and anti-apoptotic activities. Our results suggest that kurarinone might be beneficial to hepatic disorders caused by oxidative stress.

Cytotoxic Effect of Free Radical on Rat Primary Astrocytes (자유라디칼이 백서의 뇌별아교세포에 미치는 독성작용)

  • Jang, Hyuk;Kim, Myung-Sunny;Park, Hyun-Young;Kim, Yo-Sik;Cho, Kwang-Ho;Chung, Hun-Taeg;Park, Rae-Kil
    • Toxicological Research
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • Astrocytes generate free radicals including nitric oxide (NO) and reactive oxygen intermediates(ROI) which in turn play roles in the pathogenesis of degenerative diseases and sclerotic changes of the brain. This study was designed to evaluate the mechanism that free radicals contribute to the cytotoxicty of rat neonatal primary astrocytes. Treatment with NO donors alone including soldium nitroprusside(SNP), S-nitrosoglucathinoe (GSNO), and S-nitroso-n-acetylpenicillamine (SNAP) showed a little effect on the death of rat neonatal primary astrocytes, whereas SNP markedly induced the death of RAW 264.7 cells. ROI inculding H2O2 and O2 donor also slightly induced the death of rat primary astrocytes. However, 3-morpholinosydnonimine(SIN-1), a donor of peroxynitrite (ONOO), which is a reactive compound of NO with superoxide, significantly decreased the viability of rat primary astrocytes in a dose-dependent manner. Cells were retarded in outgrowth of viability of cellular processes with cell shrinkage and detachment from culture dishes. Hoechst staining demonstrated that SIN-1-induced cell death might be due to an apoptosis which was characterized by nuclear condensation and fragmentation. SIN-1-induced apoptosis was prevented by the pretreatment with superoxide dismutase (SOD) and catalase in rat primary astorocytes. Furthermore, prevention of the generation of reduced glutathione (GSH) by DL-buthionine-[S, R]-sulfoximine (BSO) aggravated the cytotoxic effects of SNP, benzene triol, and SIN-1 in rat primary astrocytes. Taken together, it is suggested that peroxynitrite may be a major effector of apoptosis and cellular antioxidant system is important for cell survival in rat prima교 astrocytes.

  • PDF

Study on Antitumor Effects of Sambonggangyongbaneo-tang and Gagamsojeokbaekchoo-san (삼봉강룡반어탕(三蓬薑龍半魚湯)과 가감소적백출산(加減消積白朮散)의 항암효과(抗癌效果)에 대(對)한 비교연구(比較硏究))

  • Kim, Dong-Woo;Ko, Seung-Hi;Choi, You-Kyung;Shim, Mun-Ki;Yeo, Eun-Kyung;Park, Se-Ki;Park, Chong-Hyeong;Ko, Jae-Chul;Jun, Chan-Yong;Han, Yang-Hee;Lee, Chung-Jung-Hye
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.425-432
    • /
    • 2000
  • Objective : It is well known that Gagamsojeokbackchool-san show antitumor effects and its activities are result from enhancement of immune function, we investigated the antitumor effects of Sambonggangyongbaneo-tang and its mechanism. Methods : We measured change of body weight, weight of immune organs (Spleen, Thymus), Liver, Kidney, tumor weight, cytotoxicity for investigation of antitumor effects of Sambonggangyongbaneo-tang. Results : 1. The body weight of mouse has no significant difference between control and sample groups. 2. The weights of immune organs (Spleen and Thymus) decreased significantly in sample groups. The weights of Liver and Kidney have no significant difference. 3. The tumor weights in mouse decreased significantly in sample groups and showed dose-dependent effect. 4. Cell viability of Sarcoma 180 has no significant difference in sample groups. 5. HeLa cell viability has no significant difference in low concentration, but it decreased significantly in high concentration. Conclusions : According to the above results, it could be suggested that Sambonggangyongbaneo-tang has prominant antitumor effects and cytotoxicity.

  • PDF

Cytoprotective Effects of Artemisia princeps Extract through Inhibition of Mitochondrial Dysfunction (애엽(艾葉)의 미토콘드리아 보호 효과)

  • Choi, Hee Yoon;Jeggal, Kyung Hwan;Kim, Young Woo;Lee, Jung Woo;Jo, Soo A;Cho, Il Je;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.21 no.2
    • /
    • pp.63-71
    • /
    • 2013
  • Objectives : Artemisia princeps is used as moxa in moxibustion and traditional herbal medicine. And its extracts or compounds is known to have an efficacy of antioxidant, anti-diabete, anti-cancer, anti-inflammation and neuroprotection. This study was performed to investigate the cytoprotective effect of Artemisia princeps extract (APE) against arachidonic acid (AA)+iron-induced oxidative stress on HepG2 cell. Methods : The effects of APE on cell viability has been assessed using MTT assay. And flow cytometric analysis was performed to estimate APE's effects on mitochondrial function. To investigate its underlying mechanism, related protein was analysed by using immunoblot analysis. Results : Treatment of APE increased relative cell viability, prevented a decline of B-cell lymphoma-extra large (Bcl-xL) and cleavage of poly(ADP-ribose) polymerase (PARP) and procaspase-3, and also protected mitochondrial membrane permeability (MMP) against oxidative stress induced by AA+iron. In addition, APE treatment increased phosphorylation of AMP-activated protein kinase (AMPK) exerts a cytoprotective effect. Conclusions : This results demonstrate that APE has an ability to activation of AMPK which protects cells from AA+iron-induced oxidative stress and restores MMP.