• Title/Summary/Keyword: Veterinary

Search Result 18,854, Processing Time 0.047 seconds

Cacao bean husk: an applicable bedding material in dairy free-stall barns

  • Yajima, Akira;Owada, Hisashi;Kobayashi, Suguru;Komatsu, Natsumi;Takehara, Kazuaki;Ito, Maria;Matsuda, Kazuhide;Sato, Kan;Itabashi, Hisao;Sugimura, Satoshi;Kanda, Shuhei
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.1048-1053
    • /
    • 2017
  • Objective: The objectives of the study were to assess the effect of cacao bean husk as bedding material in free-stall barn on the behavior, productivity, and udder health of dairy cattle, and on the ammonia concentrations in the barn. Methods: Four different stall surfaces (no bedding, cacao bean husk, sawdust, and chopped wheat straw) were each continuously tested for a period of 1 week to determine their effects on nine lactating Holstein cows housed in the free-stall barn with rubber matting. The lying time and the milk yield were measured between d 4 and d 7. Blood samples for plasma cortisol concentration and teat swabs for bacterial counts were obtained prior to morning milking on d 7. The time-averaged gas-phase ammonia concentrations in the barn were measured between d 2 and d 7. Results: The cows spent approximately 2 h more per day lying in the stalls when bedding was available than without bedding. The milk yield increased in the experimental periods when cows had access to bedding materials as compared to the period without bedding. The lying time was positively correlated with the milk yield. Bacterial counts on the teat ends recorded for cows housed on cacao bean husk were significantly lower than those recorded for cows housed without bedding. Ammonia concentration under cacao bean husk bedding decreased by 6%, 15%, and 21% as compared to no bedding, sawdust, and chopped wheat straw, respectively. The cortisol concentration was lowest in the period when cacao bean husk bedding was used. We observed a positive correlation between the ammonia concentrations in the barn and the plasma cortisol concentrations. Conclusion: Cacao bean husk is a potential alternative of conventional bedding material, such as sawdust or chopped wheat straw, with beneficial effects on udder health and ammonia concentrations in the barns.

Dietary chia (Salvia hispanica L.) improves the nutritional quality of broiler meat

  • Mendonca, Nicole Batelli de Souza Nardelli;Filho, Sergio Turra Sobrane;de Oliveira, David Henrique;Lima, Eduardo Machado Costa;e Rosa, Priscila Vieira;Faria, Peter Bitencourt;Naves, Luciana de Paula;Rodrigues, Paulo Borges
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1310-1322
    • /
    • 2020
  • Objective: The current study was conducted to evaluate the quality and profile of fatty acid in the breast and thigh, and the performance of broilers fed diets containing seed or oil of chia (Salvia hispanica L.) as a replacement for soybean, in the rearing period from 29 to 42 days of age. Methods: On the 29th day of age, 120 broilers were distributed in four treatments evaluated in five replicates of six birds. The grain or oil of soybean was respectively replaced on a weight-to-weight basis in the formulation by the seed or oil of chia, constituting the experimental diets. The roasted whole soybean and chia seed were included in the feed at 16.4%, whereas the soybean and chia oils were included at 2.5%. Results: The dietary chia oil increased the lipid peroxidation in the thigh meat, and the dietary chia seed increased the cooking loss of the thigh. However, for the other physicochemical parameters evaluated and for the proximate composition of the breast and thigh, in general, the inclusion of chia seed or oil in the diet provided similar or better results than those observed when the diets contained soybean oil or roasted whole soybean. With regard to the fatty acid profile and associated parameters, dietary chia increased the concentrations of α-linolenic, eicosapentaenoic, and docosahexaenoic acids and reduced the Σω-6:Σω-3 ratio and the atherogenicity and thrombogenicity indices of the broiler meat. However, the dietary chia seed worsened the feed conversion ratio. Conclusion: Diet containing 2.5% chia oil supplied to broilers during the period from 29 to 42 days of age improves the feed conversion ratio, increases the deposition of the ω-3 fatty acids in the breast and thigh, in addition to reducing the Σω-6:Σω-3 ratio and the atherogenicity and thrombogenicity indices, thereby resulting in meat with higher nutritional quality.

The Effects of Magnoliae officinalis Cortex and Machili thunbergii Cortex on Small Intestinal Motility (후박(厚朴)과 토후박(土厚朴)의 소장운동에 미치는 영향에 대한 연구)

  • Lee, Kyung-Jin;Park, Geun-Yong;Park, Gyu-Ha;Liu, Kwang-Hyeon;Kim, Tae-Wan;Ham, In-Hye;Bu, Young-Min;Choi, Ho-Young
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.75-81
    • /
    • 2011
  • Objectives : Magnoliae officinalis Cortex (MOC) has been used in traditional medicine for digestive diseases in Korea, China and Japan. However, Machili thunbergii Cortex (MTC) also has been used as a substitute of MOC in Korea sometimes. Thus, this study was carried out to investigate and compare the effects of MOC and MTC on intestinal motility of isolated small intestinal segments from ICR mouse. Methods : Changes in motility were recorded via isometric transducers connected to a data acquisition system and amplitude, frequency and area under the curve (AUC) of intestinal spontaneous phasic contraction were compared. Results : The MOC extracts ($1{\sim}{\mu}g/mL$) dose-dependently decreased both amplitudes and frequencies of the spontaneous phasic contraction, but not AUC. However, high concentration of MOC (100 ${\mu}g$/mL) evoked tonic contraction. And it was not inhibited by tetrodotoxin, a sodium channel blocker, and nifedipine, a L-type $Ca^{2+}$ channel antagonist. These results suggested that MOC (100 ${\mu}g$/mL)-induced tonic contraction is not mediated by nerve or L-type $Ca^{2+}$ channel. On the other hand, the MTC extracts dose-dependently inhibited amplitude and AUC, but not the frequency. Conclusions : Although both MOC and MTC affected intestinal motility, MOC is more effective on intestinal motility than MTC. And MOC has been used as a traditional medicine for a long time but not MTC. Thus, we suggested that MTC should not be used in Korea as a substitute of MOC and MOC might be useful traditional medicine for gastrointestinal disease. The mechanism of MOC is still remained to elucidate.

Identification of Differentially Expressed Genes in Ducks in Response to Avian Influenza A Virus Infections

  • Ndimukaga, Marc;Won, Kyunghye;Truong, Anh Duc;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.47 no.1
    • /
    • pp.9-19
    • /
    • 2020
  • Avian influenza (AI) viruses are highly contagious viruses that infect many bird species and are zoonotic. Ducks are resistant to the deadly and highly pathogenic avian influenza virus (HPAIV) and remain asymptomatic to the low pathogenic avian influenza virus (LPAIV). In this study, we identified common differentially expressed genes (DEGs) after a reanalysis of previous transcriptomic data for the HPAIV and LPAIV infected duck lung cells. Microarray datasets from a previous study were reanalyzed to identify common target genes from DEGs and their biological functions. A total of 731 and 439 DEGs were identified in HPAIV- and LPAIV-infected duck lung cells, respectively. Of these, 227 genes were common to cells infected with both viruses, in which 193 genes were upregulated and 34 genes were downregulated. Functional annotation of common DEGs revealed that translation related gene ontology (GO) terms were enriched, including ribosome, protein metabolism, and gene expression. REACTOME analyses also identified pathways for protein and RNA metabolism as well as for tissue repair, including collagen biosynthesis and modification, suggesting that AIVs may evade the host defense system by suppressing host translation machinery or may be suppressed before being exported to the cytosol for translation. AIV infection also increased collagen synthesis, showing that tissue lesions by virus infection may be mediated by this pathway. Further studies should focus on these genes to clarify their roles in AIV pathogenesis and their possible use in AIV therapeutics.

Inhibition Effect of Ginseng Saponin on the Growth of Citrobacterer sp. Isolated from Contaminated Ginseng (오염된 인삼으로부터 분리된 Citrobacter sp.에 대한 인삼사포닌의 생육억제 효과)

  • Park, Chae-Kyu;Kwak, Yi-Seong;Hong, Soon-Gi;Lee, Hoon-Sang;Hwang, Mi-Sun;Rhee, Man-Hee;Won, Jun-Yeon;Han, Gyeong-Ho
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.270-274
    • /
    • 2008
  • A bacterium isolated from contaminated white ginseng was identified using API kit and electron microscope. This isolate was determined as rod shaped bacterium having about 1.0 ${\mu}m$ in diameter and 2.0 to 6.0 ${\mu}m$ in length. It had motility by peritrichous flagellum. The isolate had ${\beta}-galactosidase$, arginine dihydrolase and ornithin decarboxylase. It did not have ability not only to use citrate as sole carbon source and but also to produce $H_2S$. However, it could ferment glucose, manitol, sorbitol, rhamnose, arabinose and amygdalin. From these obserbations, the isolate was identified as Citrobacter sp. Ginseng saponin was added to culture of Citrobacter sp. in order to investigate saponin's influence on its growth. The strain was incubated at $38^{\circ}C$ for 3 days after addition of 0.05, 0.5, 2.0 and 4.0% (w/v) of saponin, respectively and the growth rates was investigated. The relative bacterial growth inhibition rates showed 28.6, 66.7, 92.4 and 97.7%, respectively, when compared with saponin non-treated group. These results suggest that the growth of Citrobacter sp. is inhibited by saponin in a concentration-dependent manner.

Effect of Ursolic Acid on the Development of Mouse Embryonic Stem Cells under Hypoxia (저산소 상태에서 우르솔산이 배아줄기세포 성장에 미치는 효과)

  • Han, Gi Yeon;Park, Jae Hong;Oh, Keon Bong;Lee, Sei-Jung
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1223-1229
    • /
    • 2013
  • Ursolic acid (UA) a bio-active ingredient found in a variety of fruits and vegetables, and it has potent antioxidant activity. However, the role of UA in mouse embryonic stem (ES) cells is poorly understood. This study investigated the functional role of UA in regulating the development of mouse ES cells under hypoxia. Hypoxia did not exert a significant effect on the undifferentiated state of mouse ES cells. However, it induced reactive oxygen species (ROS) generation and increased the level of lactate dehydrogenase (LDH) production at 48 h of hypoxic exposure. Conversely, oxidative stress induced by hypoxia was significantly inhibited by UA ($30{\mu}M$) pretreatment. Hypoxia significantly decreased cell survival and the level of [$^3H$] thymidine incorporation, both of which recovered following pretreatment of UA. In addition, UA decreased the apoptotic effect of hypoxia by attenuating caspase-3 cleavage or by recovering cellular inhibition of the apoptotic protein (cIAP)-2 and Bcl-2 expression. We further found that UA decreased senescence-associated beta-galactosidase activity. We suggest that UA is a natural antioxidant and one of the functional modulators of hypoxia-induced survival, apoptosis, proliferation, and aging in mouse ES cells.

Antifungal Activities of the Essential Oils in Syzygium aromaticum (L.) Merr. Et Perry and Leptospermum petersonii Bailey and their Constituents against Various Dermatophytes

  • Park, Mi-Jin;Gwak, Ki-Seob;Yang, In;Choi, Won-Sil;Jo, Hyun-Jin;Chang, Je-Won;Jeung, Eui-Bae;Choi, In-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.460-465
    • /
    • 2007
  • This study was carried out in order to investigate the potential of using plant oils derived from Leptospermum petersonii Bailey and Syzygium aromaticum L. Merr. Et Perry as natural antifungal agents. The antifungal effects of essential oils at concentrations of 0.05, 0.1, 0.15, and 0.2 mg/ml on the dermatophytes Microsporum canis (KCTC 6591), Trichophyton mentagrophytes (KCTC 6077), Trichophyton rubrum (KCCM 60443), Epidermophyton floccosum (KCCM 11667), and Microsporum gypseum were evaluated using the agar diffusion method. The major constituents of the active fraction against the dermatophytes were identified by gas chromatography-mass spectrometry and high-performance liquid chromatography analysis. The antifungal activities of S. aromaticum oil (clove oil) against the dermatophytes tested were highest at a concentration of 0.2mg/ml, with an effectiveness of more than 60%. Hyphal growth was completely inhibited in T. mentagrophytes, T. rubrum, and M. gypseum by treatment with clove oil at a concentration of 0.2 mg/ml. Eugenol was the most effective antifungal constituent of clove oil against the dermatophytes T. mentagrophytes and M. canis. Morphological changes in the hyphae of T. mentagrophytes, such as damage to the cell wall and cell membrane and the expansion of the endoplasmic reticulum, after treatment with 0.11 mg/ml eugenol were observed by transmission electron microscopy (TEM). At a concentration of 0.2 mg/ml, L. petersonii oil (LPO) was more than 90% effective against all of the dermatophytes tested, with the exception of T. rubrum. Geranial was determined to be the most active antifungal constituent of L. petersonii oil. Taken together, the results of this study demonstrate that clove and tea tree oils exhibited significant antifungal activities against the dermatophytes tested in this study.

Inhibition of DNA-dependent Protein Kinase by Blocking Interaction between Ku Complex and Catalytic Subunit of DNA-dependent Protein Kinase

  • Kim, Chung-Hui;Cuong, Dang-Van;Kim, Jong-Su;Kim, Na-Ri;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.9-14
    • /
    • 2003
  • Recent studies indicated that cancer cells become resistant to ionizing radiation (IR) and chemotherapy drugs by enhanced DNA repair of the lesions. Therefore, it is expected to increase the killing of cancer cells and reduce drug resistance by inhibiting DNA repair pathways that tumor cells rely on to escape chemotherapy. There are a number of key human DNA repair pathways which depend on multimeric polypeptide activities. For example, Ku heterodimer regulatory DNA binding subunits (Ku70/Ku80) on binding to double strand DNA breaks (DSBs) are able to interact with 470-kDa DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and are essential for DNA-dependent protein kinase (DNA-PK) activity. It has been known that DNA-PK is an important factor for DNA repair and also is a sensor-transmitting damage signal to downstream targets, leading to cell cycles arrest. Our ultimate goal is to develop a treatment of breast tumors by targeting proteins involved in damage-signaling pathway and/or DNA repair. This would greatly facilitate tumor cell cytotoxic activity and programmed cell death through DNA damaging drug treatment. Therefore, we designed a domain of Ku80 mutants that binds to Ku70 but not DNA end binding activity and used the peptide in co-therapy strategy to see whether the targeted inhibition of DNA-PK activity sensitized breast cancer cells to irradiation or chemotherapy drug. We observed that the synthesized peptide (HNI-38) prevented DNA-PKcs from binding to Ku70/Ku80, thus resulting in inactivation of DNA-PK activity. Consequently, the peptide treated cells exhibited poor to no DNA repair, and became highly sensitive to IR or chemotherapy drugs, and the growth of breast cancer cells was inhibited. Additionally, the results obtained in the present study also support the physiological role of resistance of cancer cells to IR or chemotherapy.

Germanium-Fortified Yeast Activates Macrophage, NK Cells and B Cells and Inhibits Tumor Progression in Mice. (게르마늄 강화효모의 마우스에서의 암세포 억제 및 대식세포, NK 세포, B 세포의 활성화에 관한 연구)

  • Baek, Dae-Heoun;Jung, Jin-Wook;Sohn, Tsang-Uk;Kang, Jong-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.118-127
    • /
    • 2007
  • Germanium-fortified yeast (GY) is a organic germanium-fortified yeast with potent immune modulating activities including anti-inflammatory effect. Through cell line studies, we observed that GY can modulate the diverse immune activity but little evidence was provided on the mechanism of GY in modulating immune activities in other higher animals. In this study, we investigated the effect of GY on modulation of immune function in mice. GY was administered in normal mice or tumor-bearing mice and then effect of GY on modulation of host immune system was analyzed by using ex vivo isolated macrophages, B cells, NK cells. Admistration of GY in mice induced macrophage activation thereby increased effector function of macrophage such as increased phagocytosis, chemotaxis, adherence, $O_2-release$, NO, $TNF-{\alpha}$ production. In addition, GY administration Increased B lymphocyte activation and plaque forming cells. Furthermore, GY administration increased NK-cell mediated cytotoxicity. Furthermore, GY administration suppressed progression of tumor in mice by increasing $TNF-{\alpha}$ production and effector function of NK cells. Our results showed that GY has a potent immunostimulatory function in vivo mice model. Proper modulation and administration of GY in human could be helpful to maintaining immunological homeostasis by modulating host immune system.

Surface-Displayed IL-10 by Recombinant Lactobacillus plantarum Reduces Th1 Responses of RAW264.7 Cells Stimulated with Poly(I:C) or LPS

  • Cai, Ruopeng;Jiang, Yanlong;Yang, Wei;Yang, Wentao;Shi, Shaohua;Shi, Chunwei;Hu, Jingtao;Gu, Wei;Ye, Liping;Zhou, Fangyu;Gong, Qinglong;Han, Wenyu;Yang, Guilian;Wang, Chunfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.421-431
    • /
    • 2016
  • Recently, poly-γ-glutamic acid synthetase A (pgsA) has been applied to display exogenous proteins on the surface of Lactobacillus casei or Lactococcus lactis, which results in a surface-displayed component of bacteria. However, the ability of carrying genes encoded by plasmids and the expression efficiency of recombinant bacteria can be somewhat affected by the longer gene length of pgsA (1,143 bp); therefore, a truncated gene, pgsA, was generated based on the characteristics of pgsA by computational analysis. Using murine IL-10 as an exogenous gene, recombinant Lactobacillus plantarum was constructed and the capacity of the surface-displayed protein and functional differences between exogenous proteins expressed by these strains were evaluated. Surface expression of IL-10 on both recombinant bacteria with anchorins and the higher expression levels in L. plantarum-pgsA'-IL-10 were confirmed by western blot assay. Most importantly, up-regulation of IL-1β, IL-6, TNF-α, IFN-γ, and the nuclear transcription factor NF-κB p65 in RAW264.7 cells after stimulation with Poly(I:C) or LPS was exacerbated after co-culture with L. plantarum-pgsA. By contrast, IL-10 expressed by these recombinant strains could reduce these factors, and the expression of these factors was associated with recombinant strains that expressed anchorin (especially in L. plantarum-pgsA'-IL-10) and was significantly lower compared with the anchorin-free strains. These findings indicated that exogenous proteins could be successfully displayed on the surface of L. plantarum by pgsA or pgsA', and the expression of recombinant bacteria with pgsA' was superior compared with bacteria with pgsA.