• Title/Summary/Keyword: Vetch

Search Result 341, Processing Time 0.033 seconds

Ensemble Projection of Climate Suitability for Alfalfa (Medicago Sativa L.) in Hamkyongbukdo (함경북도 내 미래 알팔파 재배의 기후적합도 앙상블 전망)

  • Hyun Seung Min;Hyun Shinwoo;Kim Kwang Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.2
    • /
    • pp.71-82
    • /
    • 2024
  • It would be advantageous to grow legume forage crops in order to increase the productivity and sustainability of sloped croplands in Hamkyongbukdo. In particular, the identification of potential cultivation areas for alfalfa in the given region could aid decision-making on policies and management related to forage crop production in the future. This study aimed to analyze the climate suitability of alfalfa in Hamkyongbukdo under current and future climate conditions using the Fuzzy Union model. The climate suitability predicted by the Fuzzy Union model was compared with the actual alfalfa cultivation area in the northern United States. Climate data obtained from 11 global climate models were used as input data for calculation of climate suitability in the study region to examine the uncertainty of projections under future climate conditions. The area where the climate suitability index was greater than a threshold value (22.6) explained about 44% of the variation in actual alfalfa cultivation areas by state in the northern United States. The climatic suitability of alfalfa was projected to decrease in most areas of Hamkyongbukdo under future climate scenarios. The climatic suitability in Onseong and Gyeongwon County was analyzed to be over 88 in the current climate conditions. However, it was projected to decrease by about 66% in the given areas by the 2090s. Our study illustrated that the impact of climate change on suitable cultivation areas was highly variable when different climate data were used as inputs to the Fuzzy Union model. Still, the ensemble of the climate suitability projections for alfalfa was projected to decrease considerably due to summer depression in Hamkyongbukdo. It would be advantageous to predict suitable cultivation areas by adding soil conditions or to predict the climate suitability of other leguminous crops such as hairy vetch, which merits further studies.

Changes of Physical Properties of Soils by Organic Material application (유기성 물질 시용에 따른 농경지 토양물리성 변화 연구)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.304-314
    • /
    • 2004
  • The objective of this study was to investigate the effect of organic materials (compost, straw, green manure, pig manure, seed production oil cake, and industrial by products including municipal sewage sludge, industrial sewage sludge, leather processing sludge, and alcohol fermentation processing sludge) on physical properties of soils in seven paddy and four upland fields with differential soil textures, sandy loam, loam, or clay loam, etc. The investigated physical parameters were bulk density (BD), air permeability (AP), macroporosity, hardness, shear resistance, frictional resistance, water stability aggregate (WSA), and Middleton's dispersion ratio. Except for coarse sandy loam field with weak structure, a decrease in BD and shear resistance, and an increase in macroporosity and AP in plots with applying organic materials compared to plots without applying organic materials appeared. In upland fields, the positive effect of organic materials on WSA, BD, and air permeability was higher than in paddy fields. The combined plot of NPK and compost had lower BD, hardness, and shear resistance, and higher macroporosity and WSA than plot with compost. Green manure had higher positive effect on physical properties of soils compared to other organic materials and the extent of positive effect had no significant correlation with soil organic matter content. Of industrial byproducts applied in coarse sandy loam soil under upland condition, municipal sewage sludge and pig manure compost had higher effect on increase of WSA than leather processing sludge and alcohol fermentation processing sludge. Unlike WSA, there were no significant differences between industrial byproduct types in other physical properties. in silty clay loam soil under the upland condition, straw had more positive effect on soil physical parameters than hairy vetch and pig manure. Therefore, different organic materials had differently active effect on physical parameters depending on types of soil and land use. Especially, it could be thought that well-decomposed organic materials have the advantage of an increase in organic matter content, while coarse organic materials of an increase in WSA.

Effects of Sowing Mixed Legume Forage and Applying Cattle Manure on the Productivity, Feed Values and Organic Hanwoo Feeding Capacity of Whole Crop Barley (청보리 재배 시 콩과 사료작물의 혼파와 우분의 시용이 생산성, 사료가치 및 유기한우 사육능력에 미치는 영향)

  • Jo, Ik Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.4
    • /
    • pp.254-261
    • /
    • 2014
  • This study was to assess the effect of sowing mixed legume forage and applying cattle manure on the productivity and feed value of whole-crop barley (WCB) as a representative of winter crops and to estimate feeding capacity of Korean native cattle (Hanwoo) per unit area by defining optimal application level of cattle manure for more fertile soil and manure recycling for the purpose of reduced environmental pollution and efficient production of organic forage contributable to production of organic animal products. Sowing mixed legume forage significantly (p<0.05) increased yields of dry matter (DM), crude protein (CP) and total digestible nutrients (TDN) for WCB compared to WCB alone sowing, but there was no difference between mixed sowing treatments. The yields of DM, CP and TDN were significantly (p<0.05) highest in 100~150 kg N/hg. The CP and acid detergent fiber (ADF) contents were highest in mixed sowing with hairy vetch, followed by sowing mixed forage pea and WCB alone (p<0.05). There were no differences in CP and neutral detergent fiber (NDF) contents among cattle manure application levels. As nitrogen application level increased, ADF content increased (p<0.05), but TDN content decreased (p<0.05). Feeding capacity of organic Hanwoo (head/ha) weighing 450 kg of body weight with 400 g of daily gain significantly (p<0.05) increased due to mixed sowing with legume forage, and with increasing application levels of fermented cattle manure, feeding capacity significantly (p<0.05) increased. The results indicate that mixed-sowing of WCB and legume forage not only cut nitrogen application level of fermented cattle manure by over 50 kg per ha but also increased their feed value and productivity, and feeding capacity. This would be contributable to diversity of forage resources as well as production of organic animal product by creating low cost and high quality of forage.

Study on Cropping System and Nitrogen Fertilizers of Whole Crop Barley and Leguminous Crop for Production of Good Quality Forage (양질 조사료 생산을 위한 청보리와 콩과 작물의 작부체계 및 질소 시비량에 관한 연구)

  • Kim, Dae-Ho;Kang, Dal-Soon;Moon, Jin-Young;Shin, Hyun-Yul;Shon, Gil-Man;Rho, Chi-Woong;Kim, Jung-Gon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.3
    • /
    • pp.197-210
    • /
    • 2009
  • To improve the forage quality and reduce nitrogen input, trial was conducted on the effect of seeding method, combination, and nitrogen fertilizer with WCB (whole crop barley) and leguminous plant. Present experiment was carried out by split-split design having seeding methods for main plot, combinations for sub-plot, and nitrogen fertilizers for sub-sub plot with three replications. When WCB and leguminous plant were mixed-sown, WCB showed earlier heading and maturing than those of inter-sown, and the more nitrogen delayed growth stage a little. Occurrence of BaYMV (Barley Yellow Mosaic Virus), a serious disease caused by soil fungi and decrease barley yield, was deterred by mixed-seeding as compared to inter-sown barley a little. Inter-sown WCB increased the number of spike per $m^2$ as compared to mixed-seeding showing more spikes with nitrogen increase. WCB produced much fresh and dry matter yield at mixed-seeding than inter-seeding, and had advantage with hairy vetch (HV). Increased nitrogen showed much forage yield, however, half application of it is considerable for environmental-friendly farming. Electric conductivity (EC) decreased in inter-cropping or mixed-sowing soil with WCB and leguminous crop after harvest. But, organic matter (OM) content of soil after harvesting was vice versa. Acid detergent fiber (ADF) and Neutral detergent fiber (NDF) of WCB plant were higher at mixed-seeding than those of inter-sown ones. It showed increased tendency with time progress.

Effects of Sowing Mixed Legume Forage and Applying Cattle Manure on the Productivity and Organic Hanwoo Feeding Capacity of Whole Crop Wheat (콩과 사료작물의 혼파와 우분의 시용이 총체 밀의 생산성과 유기한우 사육능력에 미치는 영향)

  • Jo, Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.2
    • /
    • pp.359-372
    • /
    • 2015
  • This study was to assess the effects of sowing mixed legume forage and applying fermented cattle manure on the productivity and feed value of whole crop wheat (WCW) as a representative of winter crops and also to estimate feeding capacity of Korean native cattle (Hanwoo) per unit area by defining optimal application levels of cattle manure for more fertile soil and manure recycling for the purpose of reduced environmental pollution and efficient production of organic forage contributable to production of organic animal products. Sowing mixed legume forage significantly (p<0.05) increased yields of dry matter (DM), crude protein (CP) and total digestible nutrients (TDN) for WCW compared to WCW alone sowing, but there were no differences between mixed sowing treatments. The yields of DM, CP and TDN were significantly (p<0.05) higher in 100~150 kg N/ha. The CP and acid detergent fiber (ADF) contents were highest in mixed sowing with hairy vetch, followed by sowing mixed forage pea and WCW alone (p<0.05). There were no differences in CP among cattle manure application levels. As nitrogen application level increased, ADF content increased (p<0.05), but TDN content decreased (p<0.05). Feeding capacity of organic Hanwoo (head/ha) weighing 450 kg of body weight with 400 g of daily gain significantly (p<0.05) increased due to mixed sowing with legume forage, and with increasing application levels of fermented cattle manure, feeding capacity significantly (p<0.05) increased. The results indicated that mixed-sowing of WCW and legume forage not only reduced nitrogen application level of fermented cattle manure by over 50 kg per ha but also increased their feed value and productivity, and feeding capacity. This would be contributable to diversity of forage resources as well as production of organic animal product by creating low cost and high quality of forage.

Effects of Green Manure and Carbonized Rice Husk on Soil Properties and Rice Growth (녹비작물 혼파 이용 벼 재배 시 왕겨숯 처리가 벼 생육 및 토양 특성에 미치는 영향)

  • Jeon, Weon-Tai;Seong, Ki-Yeong;Lee, Jong-Ki;Oh, In-Seok;Lee, Young-Han;Ok, Yong-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.484-489
    • /
    • 2010
  • The cultivation of green manure crops plays an important role in soil quality and sustainability of agricultural system. However, the incorporation of green manure crops may be of concern because it can lead to strongly reducing conditions in the submerged soil. This study was conducted to evaluate the effects of rice husk carbon on rice (Oryza sativa L.) cultivation using green manure mixtures (hairy vetch + rye) in rice paddy. Field experiments were conducted in rice paddy soil (Shinheung series, fine loamy, mixed, nonacid, mesic family of Aeric Fluventic Haplaquepts) at the National Institute of Crop Science (NICS), Korea from October 2007 to October 2008. The experiments consisted of three treatments: application or no application of carbonized rice husk, and conventional fertilization. These treatments were subdivided into whole incorporation and aboveground removal of green manure mixtures. The redox potential (Eh) was higher upon application of the carbonized rice husk when compared to no application at 8 and 37 days after transplanting (DAT). The ammonium-N ($NH_4$-N) in soil was highest upon the application of carbonized rice husk + whole green manure incorporation at 17 and 49 DAT. Plant height and tiller number of rice were similar to the $NH_4$-N concentration in soil. Rice yields of application and no application of carbonized rice husk treatment were not significant. However, application of carbonized rice husk improved the soil physical properties such as bulk density and porosity after rice harvest. Therefore, the results of this study suggest that carbonized rice husk could be used as soil amendment for environmentally-friendly rice production under a green manure mixture-rice cropping system.

Production of Organic Rice (Oryza sativa L.) using Organic Cultivation Manual (유기재배매뉴얼을 활용한 유기쌀 생산)

  • Cha, Kwang-Hong;Oh, Hwan-Jung;Seo, Dong-Jun;Song, Yong-Su;Ahn, Joon-Seob;An, Kyu-Nam;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.22 no.1
    • /
    • pp.97-113
    • /
    • 2014
  • An actual proof experiment was carried out to establish the production of high quality organic rice at farm household in Gwangjin, Junnam, Korea 2011. Experimental plot was designed with conventional organic cultivation and manual organic cultivation in both Hopeongbyeo and Onnuri varities. Experimental field was consisted with suitable drainage loam soil, anryong series, and normal paddy field. Chemical characteristics of the soil were investigated from initial soil and soil after harvest in experimental sites. Seed disinfection was treated with hot water dipping method at $60^{\circ}C$ for 10 min. Rice transplanting was carried out at 17 June with 25 days seedling using machine transplanting. Golden apple snail was used to prevent weed growth as middle size (1.5~1.7 kg/10a) at one week after rice transplanting. Amount of applied fertilizer in experimental plot was supplied with organic fertilizer for the shortage after harvest of hairy vetch (1,100 kg/10a). Bordeaux mixture was used to control of sheath blight and neck blast disease in all experimental plot at 19 Aug. Application of chitin culture solution was treated in manual organic cultivation at 2 and 15 Aug. At late growth stage, incidence rate of neck blast was the highest level at Hopyeongbyeo in conventional organic cultivation. Incidence rate of sheath blight in both Hopyeongbyeo and Onnuri was higher in conventional organic cultivation than in manual organic cultivation. Incidence of rice leaf folder was the highest level at Onnuri in conventional organic cultivation. Yield index in manual organic cultivation was increased by 13% and 38% at Onnuri and Hopyeongbyeo, respectively, compared with conventional organic cultivation. Head rice percentage in both Hopyeongbyeo and Onnuri was slightly increased in manual organic cultivation. These results indicate that high quality production of rice organic cultivation could be depending on management of safe fertilization with nutrient content in soil.

Comparison of Growth, Yield and Quality by Green Crop Treatments in Rice (Oryza sativa L.) Organic Cultivation (벼 유기재배 시 녹비작물 처리에 의한 작물의 생육, 수량 및 품질 비교)

  • Cha, Kwang-Hong;Oh, Hwan-Jung;Park, Heung-Gyu;An, Kyu-Nam;Park, Ro-Dong;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.1
    • /
    • pp.55-64
    • /
    • 2011
  • To investigate a comparison of rice yield and quality by a utilization of green crops using barley and hairyvetch, this study was carried out in rice (Oryza sativa L.) organic cultivation field. Convention barley harvest (CBH), Green barley crop (GBC), Green barley+Green Hairyvetch crop (GB+HVC), and Non-Green crop (NGC) were treated in rice cultivation field. The results obtained as following: 1) Culm length and pancile length in Convention barley harvest (CBH) cultivation were longer than organic cultivation but were not significant difference in all treatments. Yields of milled rice in Green barley crop (GBC) and Green barley+Green Hairyvetch crop (GB+HVC) were by 90.3% and 95.9%, respectively. 2) Protein contents in Green barley crop (GBC) and Green barley+Green Hairyvetch crop (GB+HVC) were by 5.7% lower than 6.6% in Convention barley harvest (CBH) cultivation. Amylose contents in all treatment were similar as range 18.8% to 19.1%. Whiteness contents in Green barley crop (GBC) and Green barley+Green Hairyvetch crop (GB+HVC) were slightly higher by 38.9% and 39.1%, respectively, than 37.7% in Convention barley harvest (CBH) cultivation. 3) Palatability values in Barley harvest (BH) and Non-Green crop (NGC) were slightly higher by 82.0 and 83.8, respectively, than 77.6 in Convention barley harvest (CBH) cultivation. 4) Head rice in Non-Green crop (NGC) was 95.5%, while that of Convention barley harvest (CBH), Green barley crop (GBC), and Green barley+Green Hairy-vetch crop (GB+HVC) were slightly low as range 93.8% to 94.2%. White core and belly rice in Convention barley harvest (CBH) cultivation was the highest level by 1.7%. 5) Leaf blast, neck blast, sheath blight, rice stem maggot, rice leaf roller, rice leaf-tier, and green rice leafhopper were occurred lightly in rice field.

Comparison of Seasonal Nutrient Variations and Productivity between Rice Fields Conventionally Managed and Recommended Fertilized in Large-Scale Environment-Friendly Agricultural Districts (광역친환경 벼 농업 단지 내 관행구와 추천시비구의 시기별 무기성분과 생산성 비교)

  • Lee, Ju-Ryeong;Choi, Hyun-Sug;Jung, Seok-Kyu
    • Korean Journal of Organic Agriculture
    • /
    • v.27 no.2
    • /
    • pp.173-191
    • /
    • 2019
  • The study was initiated to compare seasonal nutrient variations and rice (Oryza sativa L.) productivity in each of leading rice farm with conventionally managed and recommended fertilized of the large-scale environment-friendly agricultural districts in Jangheung, Suncheon, and Okcheon provinces in 2017. Suncheon rice experimental farm plots included a recommended fertilization plot that had been additionally sown hairy vetch in the fall of previous year, while Okcheon rice farm included a recommended fertilization plot applying half amount of the compost in the conventional plot. A Jangheung rice farm only practiced crop-livestock farming system. Soil pH and EC in all experimental plots were suitable levels for rice growth to cultivate. Seasonal soil pH from March to September was the highest for Suncheon rice farm, and seasonal soil EC was the highest for Jangheung rice farm. Seasonal soil T-N increased in all the plots from March to June in particular for Suncheon rice farm, and Jangheung rice farm had the lowest seasonal soil P. Seasonal soil K decreased in all the plots, with the lowest levels observed for Okcheon farm. Seasonal soil NH4+ mostly increased by up to 90 mg/kg in Jangheung rice farm from March to June. Seasonal plant T-N, P and K concentrations were the highest for Jangheung rice farm. Seasonal plant T-N and P concentrations decreased from June to September, but K leveles were fluctuated between 2.0% and 2.5%. Seasonal SPAD value was the lowest in Suncheon conventional plot. Jangheung rice farm plot produced 6,303 kg of rice per ha, which was approximately two times higher than those of Okcheon recommended plot. The seasonal T-N, P and K balance was the highest in Okcheon conventional plot, with the lowest values observed for Suncheon conventional plot. As a result, Suncheon recommended plot showed relatively low levels of seasonal macro-nutrient balance and the highest rice production, which could be the most environmentally friendly farm practiced conducted in this study.

Fertilizer and Organic Inputs Effects on CO2 and CH4 Emission from a Soil under Changing Water Regimes (토양 수분 변동 조건에서 시비 및 유기물 투입에 따른 CO2와 CH4 방출 특성)

  • Lim, Sang-Sun;Choi, Woo-Jung;Kim, Han-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.104-112
    • /
    • 2012
  • BACKGROUND: Agricultural inputs (fertilizer and organic inputs) and water conditions can influence $CH_4$ and $CO_2$ emission from agricultural soils. This study was conducted to investigate the effects of agricultural inputs (fertilizer and organic inputs) under changing water regime on $CH_4$ and $CO_2$ emission from a soil in a laboratory incubation experiment. METHODS AND RESULTS: Four treatments were laid out: control without input and three type of agricultural inputs ($(NH_4)_2SO_4$, AS; pig manure compost, PMC; hairy vetch, HV). Fertilizer and organic inputs were mixed with 25 g of soil at 2.75 mg N/25 g soil (equivalent to 110 kg N/ha) in a bottle with septum, and incubated for 60 days. During the first 30-days incubation, the soil was waterlogged (1 cm of water depth) by adding distilled water weekly, and on 30 days of incubation, excess water was discarded then incubated up to 60 days without addition of water. Based on the redox potential, water regime could be classified into wetting (1 to 30 days), transition (31 to 40 days), and drying periods (41 to 60 days). Across the entire period, $CH_4$ and $CO_2$ flux ranged from 0 to 13.8 mg $CH_4$/m/day and from 0.4~1.9 g $CO_2$/m/day, and both were relatively higher in the early wetting period and the boundary between transition and drying periods. During the entire period, % loss of C relative to the initial was highest in HV (16.4%) followed by AS (8.1%), PMC (7.5%), and control (5.4%), indicating readily decomposability of HV. Accordingly, both $CH_4$ and $CO_2$ fluxes were greatest in HV treatment. Meanwhile, the lower $CH_4$ flux in AS and PMC treatments than the control was ascribed to reduction in $CH_4$ generation due to the presence of oxidized compounds such as ${SO_4}^{2-}$, $Fe^{3+}$, $Mn^{4+}$, and ${NO_3}^-$ that compete with precursors of $CH_4$ for electrons. CONCLUSION: Green manure such as HV can replace synthetic fertilizer in terms of N input, however, it may increase $CH_4$ emission from soils. Therefore, co-application of green manure and livestock manure compost needs to be considered in order to achieve satisfactory N supply and to mitigate $CH_4$ and $CO_2$ emission.