• 제목/요약/키워드: Vestibular stimulation

검색결과 66건 처리시간 0.021초

반강성 특성이 반영된 전정 유모세포 모델의 활동전위 생성에 관한 연구 (A Study on the Action Potential Generations of the Vestibular Hair Cell Model with Negative Stiffness Feature)

  • 김동영;홍기환;김규성;이상민
    • 전자공학회논문지
    • /
    • 제51권9호
    • /
    • pp.190-199
    • /
    • 2014
  • 본 논문에서는 섬모 번들 특성 모델과 통합 전정 유모세포 모델을 제안한다. 기존 전정기관 모델에 관한 연구는 외력이 없는 상태에서 전정 유모세포의 섬모 번들이 가지는 특성이나 시냅스에서 발생하는 활동전위만을 대상으로 진행되었으며 섬모번들의 고유 특성을 고려한 전정신경의 활동전위에 대한 연구는 이루어지지 않았다. 제안된 통합 전정 유모세포 모델은 외력을 반영하였고 서로 다른 규칙성을 가진 유모세포에 대해 각각의 섬모번들의 반강성 특성을 고려하였고 이를 기존의 외력없는 모델과 비교하였다. 그 결과 외부 자극의 변화에 따른 주파수 변화가 큰 불규칙적 신경섬유와 중간규칙적 신경섬유에서는 반강성 구간의 감소를 보였으나 그렇지 않은 규칙적 신경섬유에서는 기존의 반강성 특성과 유사한 특성을 보여주었다. 또한 제안된 전정 유모세포 모델을 통해 11개의 주파수 대역에서의 모델링 데이터와 기존의 동물 실험 데이터가 거의 일치함을 보여 주었다. 제안된 섬모 번들 특성 모델이 적절히 모델링되었음이 확인된다.

수중에서 회전조절과 장애물 훈련이 편마비 환자의 전정기능과 균형조절에 미치는 영향 (The Effect of Balance Control and Vestibular Function by an Aquatic Rotation Control and the Obstacle Avoidance Underwater with Hemiplegia Patients)

  • 권혜민;김수현;김현진;오석;최지호;김태열
    • 대한임상전기생리학회지
    • /
    • 제8권1호
    • /
    • pp.43-50
    • /
    • 2010
  • Purpose : The objective of this study is to effect of an aquatic rotation control and obstacle avoidance when conducted underwater on hemiplegia patient's balance ability and vestibular function. Methods : Twelve hemiplegia patients participated and were randomly assigned to a control group(I) with standard physical therapy and an aquatic group(II) with an aquatic rotation control, obstacle avoidance and standard physical therapy as well. The aquatic group trained using a Halliwick rotation control and obstacle avoidance through 3 times per week over 6 weeks. For all subjects, vestibular function, their balance, the change of electrooculogram (EOG), the change of accelerometer axis and torsiometer according to visual sense, vestibular sense with galvanic vestibular stimulation (GVS) or not during leg close stance were measured. Results : The EOG in the vertical and horizontal (p<0.05) were both significantly lowered. The change was significantly lower in the trajectory range of motion of trunk and spine with torsiometer when leg close stand (p<0.01) and leg close stand with GVS (p<0.01). The centre of gravity accelerated, there were reduced significantly difference X and Y axis of accelerometer during the closing of the leg without vision (p<0.05). There were reduced significantly difference X and Z axis of accelerometer during the closing of the leg with GVS (p<0.05). There were reduced significantly difference X and Z axis of accelerometer during the closing of the leg and close eyes with GVS (p<0.05). Conclusion : The balance ability, vestibular system and postural control is improved.

고유수용성촉진법의 목 패턴이 만성 뇌졸중 환자의 균형과 보행 능력에 미치는 영향 (The Effect of Neck Pattern of PNF on Balance and Walking Ability in Patients with Chronic Stroke)

  • 방대혁;송명수
    • PNF and Movement
    • /
    • 제17권1호
    • /
    • pp.47-56
    • /
    • 2019
  • Purpose: This study investigated the effects of neck pattern of proprioceptive neuromuscular facilitation (PNF) on balance and walking ability in patients with chronic stroke. Methods: Fourteen participants with chronic stroke were randomly assigned to vestibular rehabilitation and then divided into two groups: the neck pattern group or treadmill group. Each group underwent 20 sessions (20 minutes/day, five days/week, for four weeks). Patients were assessed with the Berg balance scale (BBS) and gait parameters (gait speed, cadence, step length, and double-limb support period) using a GAITRite system. Results: Vestibular rehabilitation for the neck pattern group and the treadmill group showed significant intragroup improvement on the BBS and in terms of gait speed, cadence, step length, and double-limb support period (p < 0.05). Vestibular rehabilitation was more effective for the neck pattern group than for the treadmill group in terms of the BBS (p = 0.00; 95% CI, 1.49-5.94), gait speed (p = 0.01; 95% CI, 0.05-0.16), cadence (p = 0.02; 95% CI, 0.54-4.99), and step length (p = 0.00, 95% CI, 1.55-4.62). Conclusion: This study used the neck pattern of PNF for vestibular rehabilitation in patients with chronic stroke. The results showed significant improvement in the patients' balance and walking ability. Therefore, the neck pattern of PNF for vestibular stimulation may be more effective than treadmill training to improve balance and walking ability in patients with chronic stroke.

흰쥐의 운동유발전위에 대한 전정신경핵과 연수망상핵의 역할 (Role of the Vestibular and Medullary Reticular Neuclei for the Motor Evoked Potentials in Rats)

  • 이문영;이성호;김재효;박병림;김민선
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.603-611
    • /
    • 1997
  • The motor evoked potentials (MEPs) have been advocated as a method of monitoring the integrity of spinal efferent pathways in various injury models of the central nervous system. However, there were many disputes about origin sites of MEPs generated by transcranial electrical stimulation. The purpose of present study was to investigate the effect of major extrapyramidal motor nuclei such as lateral vestibular nucleus (VN) and medullary reticular nucleus (mRTN) on any components of the MEPs in adult Sprague-Dalwey rats. MEPs were evoked by electrical stimulation of the right sensorimotor cortex through a stainless steel screw with 0.5mm in diameter, and recorded epidurally at T9 - T10 spinal cord levels by using a pair of teflon-coated stainless steel wire electrodes with 1mm exposed tip. In order to inject lidocaine and make a lesion, insulated long dental needle with noninsulated tips were placed stareotoxically in VN and mRTN. Lidocaine of $2{\sim}3\;{\mu}l$ was injected into either VN or mRTN. The normal MEPs were composed of typical four reproducible waves; P1, P2, P3, P4. The first wave (P1) was shown at a mean latency of 1.2 ms, corresponding to a conduction velocity of 67.5 m/sec. The latencies of MEPs were shortened and the amplitudes were increased as stimulus intensity was increased. The amplitudes of P1 and P2 were more decreased among 4 waves of MEPs after lidocaine microinjection into mRTN. Especially, the amplitude of P1 was decreased by 50% after lidocaine microinjection into bilateral mRTN. On the other hand, lidocaine microinjection into VN reduced the amplitudes of P3 and P4 than other MEP waves. However, the latencies of MEPs were not changed by lidocaine microinjection into either VN or mRTN. These results suggest that the vestibular and reticular nuclei contribute to partially different role in generation of MEPs elicited by transcranial electrical stimulation.

  • PDF

가토(家兎) 및 가묘(家猫)에 있어서 전정반규관(前庭半規管)과 외안근(外眼筋)의 상관성(相關性)에 관(關)한 연구(硏究) (Studies on the Interrelationship between the Vestibular Semicircular Canals and the Extraocular Muscles in Rabbits and Cats)

  • 김재협;박병임;박철순
    • The Korean Journal of Physiology
    • /
    • 제21권1호
    • /
    • pp.91-101
    • /
    • 1987
  • The present experiment was carried out, in the rabbit and cat, in order to explore functional interrelationship between the vestibular semicircular canals and extraocular muscles, which are involved in the vestibulooculomotor reflex as the receptor and effector organ respectively. Semicircular canals were subjected to electrical stimulation, lymphatic fluid flow or acute freezing, and responses of the extraocular muscles were recorded in terms of changes in electromyographic activity and isometric tension. Electrical stimulation of a unilateral canal elicited contraction of the superio-medial muscle group (superior oblique, superior rectus and medial rectus muscles) in the ipsilateral eye and the inferio-lateral muscle group (inferior oblique, inferior rectus and lateral rectus muscles) in the contralateral eye. Thus a simple and distinct axiom was found in the pattern of the reflex-response of the extraocular muscles. Inhibition of the unilateral canals elicited the extraocular muscle responses contrary to those observed by excitation of the canal. Based on the present experimental results, it was demonstrated that the functional interrelations between the semicircular canals and extraocular muscles are rather equivalent in the frontal eyed cats (with binocular vision) and lateral eyed rabbits (with monocular vision). Therefore the previous thesis that the vestibuloocular relations vary from species to species awaits experimental reevaluation.

  • PDF

한의 치료로 호전된 경추성 현훈 환자 치험 3예 (Three Cases of Cervical Vertigo Improved by Traditional Korean Medicine Treatment)

  • 최성환;강신우;박현선;박서현;금동호
    • 한방재활의학과학회지
    • /
    • 제32권1호
    • /
    • pp.145-155
    • /
    • 2022
  • The purpose of this study is to evaluate the effectiveness of traditional Korean medicine treatment of cervical vertigo. Three patients were diagnosed as cervical vertigo with correlating symptoms of imbalance and dizziness with neck pain. The diagnosis of cervical vertigo is also dependent on excluding other vestibular disorders on the basis of history, examination, and vestibular function tests. They were treated by acupuncture, transcutaneous electrical nerve stimulation therapy and low-intensity pulsed ultrasound at acupoints and sympathetic ganglion chain of their cervical and upper thoracic region. The evaluation of clinical outcome was done by numeric rating scale (NRS), dizziness handicap inventory (DHI) and neck disability index (NDI), EuroQol-five dimensions questionnaire (EQ-5D) index. After the treatment, the value of their NRS, NDI, DHI was significantly decreased and their EQ-5D index was significantly increased. The traditional Korean medicine treatment at cervical and upper thoracic region could be an effective way to treat cervical vertigo.

c-fos mRNA Expression in the Vestibular System following Hypergravity Stimulation in Rats

  • Jin Guang-Shi;Lee Jae-Hyo;Lee Jae-Hee;Lee Moon-Young;Kim Min-Sun;Jin Yuan Zhe;Song Jeong-Hoon;Park Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제11권1호
    • /
    • pp.1-7
    • /
    • 2007
  • Altered environmental gravity, including both hypo- and hypergravity, may result in space adaptation syndrome. To explore the characteristics of this adaptive plasticity, the expression of immediate early gene c-fos mRNA in the vestibular related tissues following an exposure to hypergravity stimulus was determined in rats. The animals were subjected to a force of 2 g (twice earth's gravity) for 1, 3, or 12 h, and were examined poststimulus at 0, 2, 6, 12, and 24 h. RT-PCR (reverse transcription polymerase chain reaction) and real-time quantitative RT-PCR were adopted to analyze temporal changes in the expression of c-fos mRNA. The hypergravity stimulus increased the expression of c-fos mRNA in the vestibular ganglion, medial vestibular nucleus, inferior vestibular nucleus, hippocampus, cerebellum, and cortex. The peak expression occurred at 0 h poststimulation in animals stimulated with hypergravity for 1 h, and at 6 h poststimulus in those stimulated for 3 h. In contrast, those stimulated for 12 h exhibited dual peaks at 0 and 12 h poststimulus. Bilateral labyrinthectomy markedly attenuated the degree of c-fos mRNA expression. Glutamate receptor antagonist also dramatically attenuated the degree of c-fos mRNA expression. These results indicate that expression of c-fos mRNA in response to hypergravity occurs in the vestibular related tissues of the central nervous system, in which peripheral vestibular receptors and glutamate receptors play an important role. The temporal pattern of c-fos mRNA expression depended on the duration of the hypergravity stimulus.

전정기능 평가를 위한 청현파 회전자극시스템의 개발 (Development of the Sinusoidal Rotatory Chair System for Evaluation of the Vestibular Function)

  • 임승관;정호춘;김규겸;진달복;김민선
    • 감성과학
    • /
    • 제1권1호
    • /
    • pp.181-197
    • /
    • 1998
  • 전정기관은 자세의 조절에 관여하지만, 전정기관의 손상은 현기증 및 자세부조화를 초래한다. 본 연구에서는 현기증의 원인을 규명할 목적으로 전정기능을 평가할 수 있는 정현파 회전자극시스템을 개발하고자 하였다. 정현파 회전자극시스템은 회전의자와 구동 및 분석프로그램으로 구성하였으며, DC 서보모터로 구동되는 회전의자는 0.01-0.64 Hz의 주파수범위에서 60 ˚/sec의 초고속도로 정현파 회전한다. 현기증 환자에서 전정기능을 평가하기 위하여 전정안구반사, 시운동성 전정안구반사 및 시각의 억제에 의한 전정안구반사를 측정하여 안구운동의 이득, 위상, 대칭성 등을 산출하도록 정현파 회전자극시스템을 개발하였으며, 정상 성인에서 시험한 결과 신뢰성있는 성적을 얻었다. 따라서 본 시스템은 현기증 환자의 진단 및 치료정도를 판정할 수 있으르로 임상적으로 널리 사용할 수 있을 것으로 사료된다.

  • PDF

평류전정자극에 의한 당뇨성 신경증 환자의 자세동요 변화 (The Change of Postural Sway of Diabetic Neuropathy by Galvanic Vestibular Stimulation)

  • 황태연;김용남;김태열;박장성;윤세원
    • 대한임상전기생리학회지
    • /
    • 제3권1호
    • /
    • pp.71-84
    • /
    • 2005
  • This study had performed with purposes to analyze the influence of the change of vestibular sens, visual and proprioceptive sense to the postural sway, so as to supply the necessary clinical materials through developing the physical therapeutic interventions and assessment format for the diabetic neuropathy patients. The sample consisted of fifteen diabetic neuropathy patients with sensory disorder in their lower limbs and fifteen age-matched normal control group. Then the effect of the GVS and the visual cue open and closed to the postural sway were measured by CoP. The summary of the comparison results were obtained below. In the comparison of diabetes neuropathy patients group and age matched normal control group, however diabetes neuropathy patients group had a decrease in superficial tactile sense(p<.001) and nerve conduction velocity(p<.001), they were able to control the posture and walk. So it is, diabetes neuropaty patients had more disturbance compared with AMC group on at a hard surface, particularly in the visual cue open(p<.001) and visual cue closed(p<.01). Moreover, since diabetes neuropathy patients group had more differences in visual cue open and closed(p<. 01), GVS(p<.01), it meant that they're affected largely by vestibular sense, visual sense. In addition, since there're the largest change in doubled sense disturbance such as visual cue open and closed under GVS, it meant that compensation of other senses were quite important for the diabetes neuropathy patients' postural control. In the conclusion, diabetes neuropathy patients who decrease or lose the somatosensory system, sensory training of visual and vestibular system are likely to be quite essential to control the posture and balance.

  • PDF

Responses of Inferior Olive Neurons to Stimulation of Semicircular Canals. II. Vertical Semicircular Canalss

  • Park, Sah-Hoon;Park, Jong-Seong;Park, Jin-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제7권4호
    • /
    • pp.193-198
    • /
    • 2003
  • In the present study, the vestibularly evoked activity of inferior olive (IO) neurons was examined to investigate the vertical vestibular information transmitted through the vestibulo-olivo-cerebellar climbing fiber pathway. The extracellular recording was made in 74 neurons of the IO of cats, while animals were sinusoidally rotated. Most of vestibularly activated IO neurons responded to the vertical rotation (roll) test and were found in or near the ${\beta}$ subnuclei $(IO{\beta})$. The vestibular IO neurons were activated, when the animal was rotated to the side contralateral to the recording site. In contrast to the observation that the gain of responses of yaw sensitive cells (YSC) was not changed by the rotation frequency, that of the roll-sensitive cells (RSC) decreased as the rotation frequency was increased. Regardless of RSC or HSC, IO neurons showed the tendency of phase-lag in their responses. The alternating excitatory and inhibitory phases of responses of RSC were dependent on the direction of head orientation, the characteristics of which are the null response plane (NRP) and the optimal response plane (ORP). The analysis based on the NRP of RSC showed that vestibular inputs from the ipsilateral anterior semicircular canal induced the NRP of the RSC response at about 45 degree counterclockwise to the longitudinal axis of the animal, and that those inputs were distributed to RSC in the rostral part of $IO{\beta}$. On the other hand, those from the posterior semicircular canal were related with the NRP at about 45 degree clockwise and with the caudal part of the $IO{\beta}$. These results suggest that IO neurons receive and encode the vestibular information, the priority of which seems to be the vertical component of the body movement rather than the horizontal ones.