DOI QR코드

DOI QR Code

A Study on the Action Potential Generations of the Vestibular Hair Cell Model with Negative Stiffness Feature

반강성 특성이 반영된 전정 유모세포 모델의 활동전위 생성에 관한 연구

  • Kim, Dongyoung (Dept. of Electronic Engineering, Inha University) ;
  • Hong, Kihwan (Institute for Information and Electronics Research(IIER), Inha University) ;
  • Kim, Kyu-Sung (Dept. of Otolaryngology-Head & Neck Surgery, Inha University Hospital) ;
  • Lee, Sangmin (Institute for Information and Electronics Research(IIER) & Dept. of Electronic Engineering, Inha University)
  • 김동영 (인하대학교 전자공학과) ;
  • 홍기환 (인하대학교 정보전자공동연구소) ;
  • 김규성 (인하대병원 이비인후과) ;
  • 이상민 (인하대학교 정보전자공동연구소 & 전자공학과)
  • Received : 2014.05.02
  • Accepted : 2014.09.02
  • Published : 2014.09.25

Abstract

In this paper, the vestibular hair bundle feature model and integrated vestibular hair cell model were proposed. In conventional modeling studies of vestibular system, only partial mechanisms were modeled, such as the characteristics of the vestibular hair bundles without external forces or the action potential of synapse, and the study about action potential of vestibular afferent considering the characteristics of the vestibular hair bundle was not performed. The proposed integrated vestibular hair cell model reflects external forces considering negative stiffness features of each hair bundles with different regularities of hair cells and our model was compared with conventional model without external forces. As a result, irregular afferent and intermediate afferent with high ratio of firing frequency variations to the changes of external stimulation had small width of negative stiffness section, but the width of the negative stiffness of regular afferent with low ratio was similar to that of conventional negative stiffness features. And the proposed integrated vestibular hair cell model showed almost same results with conventional data with animal experiments in 11 chosen frequency bands. It is verified that our proposed hair bundle feature model is adequately modeled.

본 논문에서는 섬모 번들 특성 모델과 통합 전정 유모세포 모델을 제안한다. 기존 전정기관 모델에 관한 연구는 외력이 없는 상태에서 전정 유모세포의 섬모 번들이 가지는 특성이나 시냅스에서 발생하는 활동전위만을 대상으로 진행되었으며 섬모번들의 고유 특성을 고려한 전정신경의 활동전위에 대한 연구는 이루어지지 않았다. 제안된 통합 전정 유모세포 모델은 외력을 반영하였고 서로 다른 규칙성을 가진 유모세포에 대해 각각의 섬모번들의 반강성 특성을 고려하였고 이를 기존의 외력없는 모델과 비교하였다. 그 결과 외부 자극의 변화에 따른 주파수 변화가 큰 불규칙적 신경섬유와 중간규칙적 신경섬유에서는 반강성 구간의 감소를 보였으나 그렇지 않은 규칙적 신경섬유에서는 기존의 반강성 특성과 유사한 특성을 보여주었다. 또한 제안된 전정 유모세포 모델을 통해 11개의 주파수 대역에서의 모델링 데이터와 기존의 동물 실험 데이터가 거의 일치함을 보여 주었다. 제안된 섬모 번들 특성 모델이 적절히 모델링되었음이 확인된다.

Keywords

References

  1. T. F. Youssef, D. S. Poe, "Intratympanic gentamicin injection for the treatment of Meniere's disease," Am. J. Otol., Vol. 19, no. 4, pp. 435-42, 1998.
  2. A. G. Pfleiderer, "The current role of local intratympanic gentamicin therapy in the management of unilateral Meniere's disease," Clin. Otolaryngol Allied Sci., Vol. 23, no. 1, pp. 34-41, 1998. https://doi.org/10.1046/j.1365-2273.1998.00092.x
  3. P. Martin, D. Bozoviz, Y. Choe, J. Hudspeth, "Spontaneous oscillation by hair bundles of the bullfrog's sacculus," J. Neurosci., Vol. 23, no. 11, pp. 4533-48, 2003.
  4. C. E. Smith, J. M. Goldberg, "A Stochastic Afterhyperpolarization Model of Repetitive Activity in Vestibular Afferents," Biol. Cybern., Vol. 54, no. 1, pp. 41-51, 1986. https://doi.org/10.1007/BF00337114
  5. Duck-Young Ko, Sung-Gon Kim, and Jong-Ho Choi, "A Study on the Control System Implementation of Human Body Nerves Signal," Journal of Electrical Engineering & Technology, Vol. 43-IE, no. 1, pp. 16-24, 2006.
  6. A. C. Crawford, R. Fettiplace, "The mechanical properties of ciliary bundles of turtle cochlear hair cells," J. Physiol. (Lond.), Vol. 364, pp. 359-379, 1985. https://doi.org/10.1113/jphysiol.1985.sp015750
  7. P. Martin, A. D. Mehta, A. J. Hudspeth, "Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell," Proc. Natl. Acad. Sci. USA., Vol. 97, pp. 12026-12031, 2000. https://doi.org/10.1073/pnas.210389497
  8. R. E. Marquis, A. J. Hudspeth, "Effects of extracellular Ca2+concentration on hair-bundle stiffness and gating-spring integrity in hair cells," Proc. Natl. Acad. Sci. USA., Vol. 94, pp. 11923-11928, 1997. https://doi.org/10.1073/pnas.94.22.11923
  9. J. Howard, A. J. Hudspeth, "Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell," Proc. Natl. Acad. Sci. USA., Vol. 84, pp. 3064-3068, 1987. https://doi.org/10.1073/pnas.84.9.3064
  10. Denk W., Webb W. W., "Forward and reverse transduction at the limit of sensitivity studied by correlating electrical and mechanical fluctuations in frog saccular hair cells," Hear. Res., Vol. 60, pp. 89-102, 1992 https://doi.org/10.1016/0378-5955(92)90062-R
  11. D. Kernell, "The repetitive impulse discharge of a simple neurone model compared to that of spinal motoneurones," Brain Res., Vol. 11, pp. 685-687, 1968. https://doi.org/10.1016/0006-8993(68)90157-1
  12. D. Kernell, "The early phase of adaptation in repetitive impulse discharges of cat spinal motoneurones," Brain Res., Vol. 41, pp. 184-186, 1972. https://doi.org/10.1016/0006-8993(72)90626-9
  13. P. Martin, A. J. Hudspeth, "Compressive nonlinearity in the hair bundle's active response to mechanical stimulation," Proc. Natl. Acad. Sci. USA., Vol. 98, pp. 14386-14391, 2001. https://doi.org/10.1073/pnas.251530498
  14. I. M. Purcell, S. D. Newlands, A. A. Perachio, "Responses of gerbil utricular afferents to translational motion," Brain Res., Vol. 152, pp. 317-322, 2003. https://doi.org/10.1007/s00221-003-1530-5