• Title/Summary/Keyword: Vessel force

Search Result 244, Processing Time 0.027 seconds

Development of a Towing Simulation System for the StrandedTankers (좌초 유조선의 예인 시뮬레이션 시스템 개발)

  • Chun T.B.;Yu J.S.;Gong I.Y.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.1
    • /
    • pp.70-75
    • /
    • 2000
  • It is important that effective and rapid response should be taken in the initial stage of the tanker accidents. A towing simulation system is essential to train in-site salvors for tile effective response in the tanker accidents. Training this system will help the marine environment to be protected from the oil pollution which could be proceed further by the secondary accidents. It this study, the towing simulation system using the TIS(Towing vessel Information System) was established, and ground reaction force was calculated using the simplified methods. This system will be useful for evaluation of towing procedures of oil tankers in stranding.

  • PDF

A Study on the Development of Curriculum of Polar safety training (극지기초안전교육과정 개발에 관한 연구)

  • LEE, Jin-Woo;KIM, E-Wan;WOO, Young-Jin;LEE, Chang-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.4
    • /
    • pp.1031-1041
    • /
    • 2016
  • Interests in the Polar Regions have been growing due to various factors such as depletion of natural resources and advanced resource development technologies, accelerated rate of polar ice melting as a result of global warming, etc. In particular, demand for the workforce related to vessel passage using the Northern Sea Route and polar studies is still expanding. The International Maritime Organization adopted the Polar Code in 2015 for the safety of ship operation in polar waters and it will enter into force from 2017. But education and training section in the code has been prescribed only for the safe navigation in the ice covered waters intended for navigational offices. There is no basic safety training requirement that applies commonly for all personnel exposed to the risk of the polar regions and the relevant study or discussion has not been made so far. Therefore, this study provides basic data for developing safety training courses for crew and other personnel by analyzing relevant regulations on polar safety training and the contents of relevant safety training in offshore industry required by the costal states adjacent to arctic ocean.

Study on Structural Safety of Car Securing Equipment for Coastal Carferry: Part I Estimation of Hull Acceleration using Direct Load Approach (국내 연안 카페리 차량 고박 장치 안전성에 관한 연구: 제I부 직접하중계산법을 이용한 선체 운동 가속도 산정)

  • Choung, Joonmo;Jo, Huisang;Lee, Kyunghoon;Lee, Young Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.440-450
    • /
    • 2016
  • The capsizing and consequent sinking of a coastal car ferry was recently reported, with numerous human casualties. The primary cause was determined to be a sudden turn with improperly stowed and secured cargo. Part I of this study introduces how long term acceleration components are determined from seakeeping analyses. A carferry with a displacement of 1,633 tonf was selected as the target vessel. Sea data that included the significant wave heights and periods were collected at four observation buoys, some of which were far away from two main voyage routes: Incheon-Jeju and Pusan-Jeju. Frequency response analyses were performed to obtain the linearized radiation force coefficients, hydrostatic stiffnesses, and wave excitation forces. Time response analyses were sequentially performed to produce the motion-induced acceleration processes. The probabilistic distributions of the acceleration components were determined using a peak and valley counting method. Long term extreme acceleration components were proposed as a final result.

The Study on the Methodology for Naval Ship(Craft Air Cushion) Vulnerability Analysis (함정(공기부양정) 취약성 분석방법 연구)

  • Choi, Bong-Wan;Lee, Chan-Sun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1106-1112
    • /
    • 2010
  • One of the considerations in weapon systems procurement is the objective of maximizing the current force. Also, offensive effects, rather than defense are valued in weapons system development and procurement. Especially, the survivability of a naval ship is equally important as the offensive effect of onboard weapons. In case of naval ships, development of attack tactics and research regarding damage minimization must be conducted through live fire exercise against actual targets in order to minimize damage from the enemy. However, it is difficult to conduct such adequate measures due to realistic limitations such as time and budget in order to verify and calculate a weapon system's attack and damage effects along with the lack of practical studies in this subject despite numerous interests. Research are being conducted utilizing M&S to estimate attack effects and study damages due to such reason, but the lack of authoritative data and development ability are limiting calculation of reliable results. Therefore, this study will propose a measure to increase survivability of a weapon system(ship/vessel) utilizing research of vulnerability from enemy attacks analysis method against a naval ship(Craft Air Cushion).

Experimental Study on Slow Drift Motion Damping (장주기 표류운동의 감쇠력에 관한 연구)

  • 김현조;홍사영;김진하
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.4
    • /
    • pp.24-31
    • /
    • 2002
  • In the present study, the amount of slow drift motion damping of shuttle tanker in still water and various environments is measured through free decay model test. Although the estimation of slow drift damping is essential in analysing slow drift motion of moored FPSO or DP controlled shuttle tanker, it is difficult to predict damping accurately by theoretical analysis. The estimation of drift damping depends on model test mostly. Through the model test, the amount of slow drift damping is measured and the effects of environments and thruster action on drift damping are investigated. The measured damping characteristics are expected to be used in the analysis on slow drift motion of moored vessel.

Magneto-Mechatronics : A New Approach to Sensors and Actuators for Next-Generation Biomedical and Rehabilitation Devices (자기 메카트로닉스 : 차세대 의공학 및 재활 기기 개발을 위한 센서와 액추에이터의 새로운 접근방법)

  • Yu, Chang Ho;Kim, Sung Hoon
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Magnetic sensors and actuators have been widely used in industry and medical fields. Integrated systems based on sensors and actuators are defined as mechatronics that is the general combination of mechanics and electronics. Recently, magnetic wireless sensors and actuators have been developed and used at a systematic level. In particular, their mechanisms depend on magnetic, such as magnetic material and physical phenomena. However, their research boundary has not been clear. Researchers talk of magnetic micro-robots, magnetic actuators and sensors. Therefore, a new and correct definition is required. In this study, we introduce the advanced and extended concept of mechatronics, which is a magneto-mechantronics for biomedical and rehabilitation. Among various applications, we focused on wireless pump and sensing system for blood vessel rehabilitation and local motion capture, respectively.

A Effect of Shot Peening for Fatigue Life of Spring Steel for Vessel Application (선박용 스프링강의 피로수명에 미치는 쇼트피닝의 영향)

  • Ryu Hyung-Ju;Park Keyung-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.426-435
    • /
    • 2005
  • The lightness of components required in automobile and machinery industries is requiring high strength of components. Therefore this requirement is accomplished as the process of shot-peening method that the compressive residual stress is made on the metal surface as one of various improvement methods. Special research is, therefore, needed about compressive residual stress on the metal surface in the process of shot-peening method. Therefore, in this paper the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in environmental condition(temperature) and mechanical condition(shot velocity, stress ratio) was investigated with considering fracture mechanics. By using the methods mentioned above, the following conclusions have been drawn. (1) The fatigue crack growth rate(da/dN) of the shot-peened material was lower than that of the un-peened one. In high temperature range. fatigue crack growth rate decreased with increasing temperature range, while fatigue crack growth rate increased by decreasing temperature in low temperature. (2) Fatigue life shows more improvement in the shot-peened material than in the un-peened material. And compressive residual stress of surface on the shot-peen processed operate resistance force of fatigue crack propagation.

Modeling and controller design of crabbing motion for auto-berthing (선박 자동접안을 위한 순수 횡 이동 모델링 및 제어기 설계)

  • Park, Jong-Yong;Kim, Nakwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.56-64
    • /
    • 2013
  • Crabbing motion is the pure sway motion of a ship without surge velocity. Thus, it can be applied to a berthing operation. Crabbing motion is induced by a peculiar operation method called the push-pull mode. The push-pull mode is induced by using a combination of the main propeller and side thruster. Two propellers generating the same amounts of thrust and rotating in opposite directions produce some yawing moment on a vessel but do not induce longitudinal motion. With the additional operation of side thrusters, the push-pull mode is used to induce a large amount of lateral force. In this paper, three-degree-of-freedom equations of motion such as for the surge, sway, and yaw are constructed for the crabbing motion. Based on these equations of motion, a feedback linearization control method is applied to auto-berthing control for a twin-screw ship with side thrusters. The controller can deal with the nonlinearity of a system, which is present in the berthing maneuver of a twin screw ship. A simulation of the auto-berthing of a ship is performed to validate the performance of the designed controller.

Dynamic Analysis of Floating Bodies Considering Multi-body Interaction Effect (다물체 연성효과를 고려한 부유체의 동적거동 안전성 해석)

  • Kim, Young-Bok;Kim, Moo-Hyun;Kim, Yong-Yook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.6
    • /
    • pp.659-666
    • /
    • 2009
  • Recently, there are several problems in space, contiguity and facility of the existing harbors issued due to the trend of enlarging the container capacity of the large container vessel, the Mobile Harbor has been proposed conceptually as an effective solution for those problems. This concept is a kind of transfer loader of the containers from the large container ship, which is a floating barge with a catamaran type in the underwater part, and so prompt maneuverability and work effectiveness. For the safe mooring of two floating bodies, a container and the mobile harbor, in the near sea apart from the quay, a robot arm mooring facility specially devised would be designed and verified through comparison study under various environmental sea condition in the inner and outer harbor. DP system (Dynamic Positioning System) using the azimuth thruster and a pneumatic fender, etc, will be considered as a next research topic for the mooring security of multi-body floaters.

Study of a vibrating propulsion system for marine vessels: Evaluation of the efficiency for a boat 13 m long

  • Muscia, Roberto
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.201-211
    • /
    • 2018
  • This paper illustrates recent advancements relative to a non-conventional propulsion system for boats and is based on two previous papers of the author presented at a conference (see Muscia, 2015a,b). The system does not consider propellers and utilizes the vibration generated by two or more pairs of counter rotating masses. The resultant of the centrifugal forces applies an alternate thrust to the hull that oscillates forward and backward along the longitudinal axis of the boat. The different hydrodynamic drag forces that oppose to the oscillation produce a prevalently forward motion of the vessel. The vibration that causes the motion can be suitably defined to maximize the forward displacement and the efficiency propulsion of the system. This result is obtained by using elliptical gears to rotate the counter rotating masses. The computation of the propulsion efficiency is based on a suitable physical mathematical model. Correlations between numerical experiments on models and possible full scale application are discussed. Some remarks in relation to practical applications and critical issues of the propulsive solution are illustrated. The results have been obtained with reference to a CAD model of a real boat already manufactured whose length is approximately equal to 13 m.