• Title/Summary/Keyword: Vertical through-flow

Search Result 317, Processing Time 0.02 seconds

Various Meanings of Wolji Pond Construction in Shilla Dynasty (월지 조성 목적의 중의성(重意性) 고찰)

  • Hong, Kwang-Pyo
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.34 no.3
    • /
    • pp.67-77
    • /
    • 2016
  • This study was initiated from question raised on existing study achievement that purpose for Wolji construction simply was to build gardens. In this research, after raising a question on existing theory about the Wolji construction, another purpose of Wolji construction is investigated. Study result is as follows. First, two questions raised on Wolji construction are "Was Wolji constructed as a garden from the beginning?" and "Was Wolji region available land as now at time of creation?" However, it was verified that the purpose of Wolji construction was to use not as a garden but as a detention pond, and the land of such region was unserviceable at time of Wolji construction. Second, in terms of locations and Topography, it was confirmed that Wolji has a favorable condition for undercurrent function as it is positioned at the end point of flow path formed by gushout water spurting from the water flooded from Bukcheon, or low and wetland. Third, from hydraulic point of view, Bukcheon always has a possibility of flooding occurrence before completing river bank build up, and such flooding damage was curved at Guhwangdongwonji, and at Wolji once again in order to prevent the damage spread into the center of Wanggyeong. Fourth, from urban planning point of view, it was confirmed that urban functions were not established in Wolji region before Wolji construction, and urban planning was completed through the opening of roads and others, after Wolji construction. Fifth, it was confirmed that inflow and outflow device of Wolji, and vertical stone platform at western side of Wolji were the facilities to provide sufficient functions as detention ponds.

Hydrologic Characterization through Ground Water Monitoring in a Coastal Aquifer (해안 대수층에서 지하수 장기 모니터링을 통한 수리 특성 조사)

  • Shim, Byoung-Ohan;Lee, Chol-Woo
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.239-246
    • /
    • 2011
  • Groundwater in small islands is used as main water resource but the overuse of groundwater may cause seawater intrusion and temperature decrease in geothermal wells. This study aimed to characterize the hydrogeology of Maeum-ri area in Seokmo Island of Ganghwagun using long-term monitoring at groundwater wells and geothermal wells. In the monitoring period seasonal water level change, consistent drop or increase of water levels are not detected. The groundwater temperature about 10m below ground surface shows year cycle variation having two to five months difference with ambient temperature cycle. The storativity was calculated by tidal method. The storativity estimated by adapting tidal efficiency factor showed some larger values than that by using tidal time lag. The result suggested that the tidal method assuming several assumptions on aquifer condition may produce broad ranges but the calculated ranges at this application are reasonable. The similar shape of groundwater level change and tidal effects was observed at several wells clustered east-south-east direction which may implicate the distribution of vertical fracture system strongly related with groundwater flow channels. The applied methodology and study results will bc valuable to evaluate optimal pumping rate for the preservation of groundwater resources, and to manage geothermal development.

Seasonal Characteristics of Pore Development and Hydraulic Properties of Surface Soil in Two Forested Watershed (두 산림유역의 표층 토양의 공극 발달과 수리학적 성질의 계절적 특성)

  • Joo, Sung-Hyo;Gwak, Yong-Seok;Kim, Su-Jin;Kim, Joon;Kim, Sang-Hyun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.151-161
    • /
    • 2009
  • Configuration of soil hydraulic property is an essential component to understand the hydrological processes at the hillslope scale. In this study, we investigated temporal variations in pore development and soil hydraulic properties during the period from March to October in 2008. Characteristics for macropore flow and hydraulic conductivity were measured at two hillslopes: one is the hillslope located at the Buprunsa in Sulmachun watershed, and the other is the hillslope located in Gwangneung Research Forest. Vertical fluxes through macropore were measured using a tension infiltrometer at the depth of surface. The saturated hydraulic conductivities in March, June, July and September were relatively high compared to those in May and October. Temporal variations in several soil hydraulic features could be explained by the differences in vegetation activity and soil moisture content determined by antecedent precipitation. Particularly, the features of macropores had a substantial impact on hydraulic conductivity in the forest hillslope. The temporal nonuniformity of the soil hydraulic properties observed in this study manifests the dynamic features of hydrological processes in the hillslope scale and the experimental results will be useful to understand the internal hydrological processes in the mountainous hillslope.

A Study on Detection of Overloaded Vehicles at Highway Toll Gates Using Detection of Height Changes in Vehicle Cargo Boxes (차량 적재함의 높이 변화 감지를 이용한 고속도로 톨게이트 과적차량 검출에 관한 연구)

  • Gwang Lee;Bong-Keun Kim
    • Journal of Practical Engineering Education
    • /
    • v.16 no.3_spc
    • /
    • pp.391-399
    • /
    • 2024
  • All highway toll gates in Korea use low-speed WIM(Weight-In-Motion) to block overloaded cargo vehicles from entering the main highway, but some cargo vehicle owners are illegally modifying vehicles to operate variable axles and evading crackdowns by manipulating the axles. In previous studies detect all tires of a running vehicle were detected to determine whether there is axle manipulation. However, because the vehicle entry area at the highway toll gate checkpoint is very narrow, there is a problem that it is realistically difficult to film all tires of the entering vehicle in one video frame. In this paper, we proposed a system that can determine whether the axle is being operated through changes in the height of the vehicle's cargo box rather than by detecting tires. To detect changes in the height of a cargo box, we propose a method to extract the representative line of the cargo box using Hough transform and then measure the change in height of the representative line to detect the change in height of the cargo box. In addition, we propose a method to detect changes in the vertical height of a cargo box by accumulating motion vectors of pixels within a certain area of the image using optical flow. And the two methods were compared and their advantages and disadvantages were analyzed and presented.

Stabilizing Soil Moisture and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System Controlled by Humidifying Cycle (가습 주기에 따른 벽면형 식물바이오필터의 토양 수분 안정화 및 실내공기질 정화)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.605-617
    • /
    • 2015
  • The ultimate goal of this research is to develop a botanical biofiltration system that combines a green interior, biofiltering, and automatic irrigation to purify indoor air pollutants according to indoor space and the size of biofilter. This study was performed to compare the stability of air flow characteristics and removal efficiency (RE) of fine dust within a wall-typed (vertical) botanical biofilter depending on humidifying cycle and to investigate RE of volatile organic compounds (VOCs) by the biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be suitable for indoor space utilization. As a result, relative humidity, air temperature, and soil moisture content (SMC) within the biofilter showed stable values regardless of three different humidifying cycles operated by the metering pump. In particular, SMCs were consistently maintained in the range of 27.1-29.7% during all humidifying cycles; moreover, a humidifying cycle of operating for 15 min and pausing for 45 min showed the best horizontal linear regression (y = 0.0008x + 29.09) on SMC ($29.0{\pm}0.2%$) during 120 hour. REs for number of fine dust (PM10) and ultra-fine dust (PM2.5) particles passed through the biofilter were in the range of 82.7-89.7% and 65.4-73.0%, respectively. RE for weight of PM10 passed through the biofilter was in the range of 58.1-78.9%, depending on humidifying cycle. REs of xylene, ethyl benzene, total VOCs (TVOCs), and toluene passed through the biofilter were in the range of 71.3-75.5%, while REs of benzene and formaldehyde (HCHO) passed through the biofilter were 39.7% and 44.9%, respectively. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was very effective for indoor air purification.

Performance Analysis of a Deep Vertical Closed-Loop Heat Exchanger through Thermal Response Test and Thermal Resistance Analysis (열응답 실험 및 열저항 해석을 통한 장심도 수직밀폐형 지중열교환기의 성능 분석)

  • Shim, Byoung Ohan;Park, Chan-Hee;Cho, Heuy-Nam;Lee, Byeong-Dae;Nam, Yujin
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.459-467
    • /
    • 2016
  • Due to the limited areal space for installation, borehole heat exchangers (BHEs) at depths deeper than 300 m are considered for geothermal heating and cooling in the urban area. The deep vertical closed-loop BHEs are unconventional due to the depth and the range of the typical installation depth is between 100 and 200 m in Korea. The BHE in the study consists of 50A (outer diameter 50 mm, SDR 11) PE U-tube pipe in a 150 mm diameter borehole with the depth of 300 m. In order to compensate the buoyancy caused by the low density of PE pipe ($0.94{\sim}0.96g/cm^3$) in the borehole filled with ground water, 10 weight band sets (4.6 kg/set) were attached to the bottom of U-tube. A thermal response test (TRT) and fundamental basic surveys on the thermophysical characteristics of the ground were conducted. Ground temperature measures around $15^{\circ}C$ from the surface to 100 m, and the geothermal gradient represents $1.9^{\circ}C/100m$ below 100 m. The TRT was conducted for 48 hours with 17.5 kW heat injection, 28.65 l/min at a circulation fluid flow rate indicates an average temperature difference $8.9^{\circ}C$ between inlet and outlet circulation fluid. The estimated thermophysical parameters are 3.0 W/mk of ground thermal conductivity and 0.104 mk/W of borehole thermal resistance. In the stepwise evaluation of TRT, the ground thermal conductivity was calculated at the standard deviation of 0.16 after the initial 13 hours. The sensitivity analysis on the borehole thermal resistance was also conducted with respect to the PE pipe diameter and the thermal conductivity of backfill material. The borehole thermal resistivity slightly decreased with the increase of the two parameters.

Summer-Time Behaviour and Flux of Suspended Sediments at the Entrance to Semi-Closed Hampyung Bay, Southwestern Coast of Korea (만 입구에서 부유퇴적물 거동과 플럭스: 한반도 서해 남부 함평만의 여름철 특성)

  • Lee, Hee-Jun;Park, Eun-Sun;Lee, Yeon-Gyu;Jeong, Kap-Sik;Chu, Yong-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 2000
  • Anchored measurements (12.5 hr) of suspended sediment concentration and other hydrodynamic parameters were carried out at two stations located at the entrance to Hampyung Bay in summer (August 1999). Tidal variations in water temperature and salinity were in the range of 26.0-27.9$^{\circ}C$ and 30.9-31.5, respectively, indicating exchange offshore and offshore water mass. Active tidal mixing processes at the entrance appear to destroy the otherwise vertical stratification in temperature and salinity in spite of strong solar heating in summer. On the contrary, suspended sediment concentrations show a marked stratification with increasing concentrations toward bottom layer. Clastic particles in suspended sediments consist mostly of very fine to fine silt (4-16 ${\mu}$m) with a poorly-sorted value of 14.7-25.9 ${\mu}$m. However, at slack time with less turbulent energy, flocs larger than 40 ${\mu}$m are formed by cohesion and inter-collision of particles, resulting in a higher settling velocity. Strong ebb-dominated and weak flood dominated tidal currents, in the southwestern and the northeastern part, respectively, result in a seaward residual flow of -10${\sim}$-20 cm $s^{-1}$ at station H1 and a bayward residual flow less than 5.0 cm $s^{-1}$ at station H2. However, mean concentration of suspended sediments at station H1 is higher at flood (95.0-144.1 mg $1^{-1}$) than in ebb (75.8-120.9 mg $1^{-1}$). On the contrary, at the station H2, the trend is reversed with higher concentration at the ebb (84.7-158.4 mg $1^{-1}$) than that at the flood (53.0-107.9 mg $1^{-1}$). As a result, seaward net suspended sediment fluxes ($f_{s}$) are calculated to be -1.7 ${\sim}$-$15.610^{3}$ kg $m^{-2}$ $s^{-1}$ through the whole water column. However, the stations H1 and H2 show definitely different values of the flux with higher ones in the former than in the latter. Alternatively, depth-integrated net suspended sediment loads ($\c{Q}_{s}$) for one tidal cycle are also toward the offshore with ranges of 0.37${\times}$$10^{3}$ kg $m^{-1}$ and 0.21${\times}$$10^{3}$ kg $m^{-1}$, at station H1 and H2, respectively. This seaward transport of suspended sediment in summer suggests that summer-time erosion in the Hampyung muddy tidal flats is a rather exceptional phenomenon compared to the general deposition reported for many other tidal flats on the west coast of Korea.

  • PDF