DOI QR코드

DOI QR Code

Stabilizing Soil Moisture and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System Controlled by Humidifying Cycle

가습 주기에 따른 벽면형 식물바이오필터의 토양 수분 안정화 및 실내공기질 정화

  • Lee, Chang Hee (Department of Horticulture, Hankyong National University) ;
  • Choi, Bom (Department of Horticulture, Hankyong National University) ;
  • Chun, Man Young (Department of Environmental Engineering, Hankyong National University)
  • Received : 2015.03.16
  • Accepted : 2015.04.10
  • Published : 2015.08.31

Abstract

The ultimate goal of this research is to develop a botanical biofiltration system that combines a green interior, biofiltering, and automatic irrigation to purify indoor air pollutants according to indoor space and the size of biofilter. This study was performed to compare the stability of air flow characteristics and removal efficiency (RE) of fine dust within a wall-typed (vertical) botanical biofilter depending on humidifying cycle and to investigate RE of volatile organic compounds (VOCs) by the biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be suitable for indoor space utilization. As a result, relative humidity, air temperature, and soil moisture content (SMC) within the biofilter showed stable values regardless of three different humidifying cycles operated by the metering pump. In particular, SMCs were consistently maintained in the range of 27.1-29.7% during all humidifying cycles; moreover, a humidifying cycle of operating for 15 min and pausing for 45 min showed the best horizontal linear regression (y = 0.0008x + 29.09) on SMC ($29.0{\pm}0.2%$) during 120 hour. REs for number of fine dust (PM10) and ultra-fine dust (PM2.5) particles passed through the biofilter were in the range of 82.7-89.7% and 65.4-73.0%, respectively. RE for weight of PM10 passed through the biofilter was in the range of 58.1-78.9%, depending on humidifying cycle. REs of xylene, ethyl benzene, total VOCs (TVOCs), and toluene passed through the biofilter were in the range of 71.3-75.5%, while REs of benzene and formaldehyde (HCHO) passed through the biofilter were 39.7% and 44.9%, respectively. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was very effective for indoor air purification.

본 연구의 최종 목표는 실내의 공간과 식물바이오필터의 규모에 따라 실내공기 오염물질을 정화할 수 있는 식물 녹화와 자동관수 그리고 생물학적 여과 기능을 통합한 식물바이오필터 시스템의 개발이다. 본 연구는 가습 주기에 따른 벽면형(수직형) 식물바이오필터내 공기 흐름의 특성에 대한 안정성과 미세먼지 제거율을 비교하고, 이 식물바이오필터에 의한 휘발성 유기화합물의 제거율을 조사하기 위해 수행하였다. 본 실험에 사용된 식물바이오필터는 실내 공간 활용에 적합하도록 물펌프, 물탱크, 송풍기, 가습장치, 그리고 다층구조의 식물 식재 공간을 일체형으로 설계하였다. 실험 결과, 물펌프에 의해 작동하는 세 가지 다른 가습 주기 처리에 관계없이 식물바이오필터의 상대습도, 온도, 그리고 토양 수분 함량은 안정된 값을 나타내었다. 토양 수분 함량은 모든 가습 주기 처리에서 27.1-29.7%의 범위에서 안정적으로 유지하였으며, 특히 15분 작동 45분 작동 중지의 가습 주기를 120시간 동안 처리하여 $29.0{\pm}0.2%$의 평균 토양 수분 함량을 유지하면서 가장 수평적인 일차회귀식(y = 0.0008x + 29.09)을 보여주었다. 가습 주기에 따라 식물바이오필터를 통과한 미세먼지(PM10)와 초미세먼지(PM2.5) 입자 수에 대한 제거율(RE)은 각각 82.7-89.7%와 65.4-73.0% 범위에 있었고, PM10의 무게에 대한 RE는 58.1-78.9%의 범위에 있었다. 식물바이오필터를 통과한 자일렌, 에틸벤젠, 총 휘발성 유기화합물, 톨루엔의 RE는 71.3-75.5%의 범위에 있었으나, 벤젠과 포름알데히드의 RE는 각각 39.7%와 44.9%로 나타났다. 따라서 실내식물을 식재할 수 있는 본 벽면형 식물바이오필터는 실내 공기 정화에 매우 효과가 있는 것으로 확인하였다.

Keywords

References

  1. Allen, E. R. and Y. Yang. 1991. Biofiltration control of hydrogen sulfide emissions. In: Proceedings of the 84th Annual Meeting & Exhibition of the Air & Waste Management Association. June 16-21, Vancouver. J. Air Waste Manag. Assoc. Pittsburgh, PA, USA.
  2. Bailey, J. E. and D.F. Ollis. 1986. Biochemical Engineering Fundamentals. 2nd ed. McGraw-Hill, Singapore.
  3. Bang, S.W., J.Y. Kim, J.E. Song, K.J. Kim, and D.H. Kim. 2013. Effect of the bio green wall system for the improvement of indoor environment. J. Kor. Soc. People Plants Environ. 16:415-420. https://doi.org/10.11628/ksppe.2013.16.6.415
  4. Brauer, M., S. Henderson, T. Kirkham, K.S. Lee, K. Rich, and K. Teschke. 2002. Review of the Health Risks Associated with Nitrogen Dioxide and Sulfur Dioxide in Indoor Air. Rep. Health Canada p.72.
  5. Cardenas-Gonzalez, B., S.J. Ergas, and M.S. Switzenbaum. 1999. Characterization of compost biofiltration media. J. Air Waste Manag. Assoc. 49:784-793. https://doi.org/10.1080/10473289.1999.10463847
  6. Choi, B., M.Y. Chun, and C.H. Lee. 2014. Evaluation for soil moisture stabilization and plant growth response in horizontal biofiltraton system depending on wind speed and initial soil moisture. Kor. J. Plant Res. 27:546-555. https://doi.org/10.7732/kjpr.2014.27.5.546
  7. Christen, P., F. Domenech, G. Michelena, R. Auria, and S. Revah. 2002. Biofiltration of volatile ethanol using sugar cane bagasse inoculated with Candida utilis. J. Hazard. Mater. 89:253-265. https://doi.org/10.1016/S0304-3894(01)00314-4
  8. Corsi, R. L. and L. Seed. 1995. Biofiltration of BTEX: Media, substrate, and loadings effects. Environ. Progress 14:151-158. https://doi.org/10.1002/ep.670140313
  9. Darlington, A. 2000. The biofiltration of indoor air: implications for air quality, Indoor Air 10:39-46. https://doi.org/10.1034/j.1600-0668.2000.010001039.x
  10. Darlington, A. 2004. Room Air Cleansing Using Hydroponic Plants, United States Patent No. US672791B2.
  11. Darlington, A., J.F. Dat, and M.A. Dixon. 2001. The biofiltration of indoor air: air flux and temperature influences the removal of toluene, ethylbenzene, and xylene. Environ. Sci. Technol. 35:240-246. https://doi.org/10.1021/es0010507
  12. Darlington, A., M. Chan, D. Malloch, C. Pilger, and M.A. Dixon. 2000. The biofiltration of indoor air: implications for air quality. Indoor Air 10:39-46. https://doi.org/10.1034/j.1600-0668.2000.010001039.x
  13. Darlington, A. and M. Dixon. 2000. The biofiltration of indoor air III: air flux temperature and removal of VOCs, in: Proceedings of the 2000 USC-TRG Conference, Biofiltration for Air Pollution Control, Los Angeles, California, October 19-20, p. 269-276.
  14. Delhomenie, M.C., L. Bibeau, J. Gendron, R. Brzezinski, and M. Heitz. 2001. Air treatment by biofiltration: Influence of nitrogen concentration on operational parameters. Indust. Eng. Chem. Res. 40:5405-5414. https://doi.org/10.1021/ie0011270
  15. Delhomenie, M.C., L. Bibeau, and M. Heitz. 2002a. A study of the impact of particle size and adsorption phenomena in a compost based biological filter. Chem. Eng. Sci. 57:4999-5010. https://doi.org/10.1016/S0009-2509(02)00397-4
  16. Delhomenie, M.C., L. Bibeau, N. Bredin, S. Roy, S. Brousseau, J.L. Kugelmass, R. Brzezinski, and M. Heitz. 2002b. Biofiltration of air contaminated with toluene on a compost-based bed. Adv. Environ. Res. 6:239-244. https://doi.org/10.1016/S1093-0191(01)00055-7
  17. Delhomenie, M.C. and M. Heitz. 2005. Biofiltration of air: a review. Crit. Rev. Biotechnol. 25:53-72. https://doi.org/10.1080/07388550590935814
  18. Deshusses, M.A., C.T. Johnson, and G. Leson. 1999. Biofiltration of high loads of ethyl acetate in the presence of toluene. J. Air Waste Manag. Assoc. 49:973-979. https://doi.org/10.1080/10473289.1999.10463869
  19. Devinny, J.S., M.A. Deshusses, and T.S. Webster. 1999. Biofiltration for Air Pollution Control. CRC Lewis Publishers, Boca Raton, FL, USA.
  20. Eitner, D. and H.G. Gethke. 1987. Design, construction and operation of biofilters for odor control in sewage treatment plants. In: Proceedings of the 80th Annual Meeting of APCA. June 21-26. New York. J. Air Waste Manag. Assoc. Pittsburgh, PA, USA.
  21. Elmrini, H., N. Bredin, Z. Shareefdeen, and M. Heitz. 2004. Biofiltration of xylene emissions: Bioreactor response to variations in the pollutant inlet concentration and gas flow rate. Chem. Eng. J. 100:149-158. https://doi.org/10.1016/j.cej.2004.01.030
  22. Jorio, H., L. Bibeau, G. Viel, and M. Heitz. 1999. Effects of gas flow rate and inlet concentration on xylene vapors biofiltration performances. Chem. Eng. J. 76:209-221.
  23. Kennes, C. and F. Thalasso. 1998. Waste gas biotreatment technology. J. Chem. Technol. Biotechnol. 72:303-319. https://doi.org/10.1002/(SICI)1097-4660(199808)72:4<303::AID-JCTB903>3.0.CO;2-Y
  24. Kent, T.D., S.C. Williams, and C.S.B. Fitzpatrick. 2000. Ammoniacal nitrogen removal in biological aerated filters: The effect of media size. J. Chartered Inst. Water Environ. J. 14:409-414. https://doi.org/10.1111/j.1747-6593.2000.tb00286.x
  25. Lee, C.H. and M.Y. Chun. 2015. Water Supply System For Biofilter Flowerpot. Republic of Korea Patent No. 10-1488108.
  26. Leson, G., R. Chavira, A. Winer, and D. Hodge. 1995. Experiences with a full-scale biofilter for control of ethanol emissions. In: Proceedings of the 88th Annual Meeting & Exhibition of the Air & Waste Management Association. June 18-23. San Diego. J. Air Waste Manag. Assoc. Pittsburgh, PA, USA.
  27. Liu, Y.J., Y.J. Mu, Y.G. Zhu, H. Ding, and N.C. Arens. 2007. Which ornamental plants species effectively remove benzene from indoor air?. Atmos. Environ. 41:650-654. https://doi.org/10.1016/j.atmosenv.2006.08.001
  28. Martin, R.W., H. Li, J.R. Mihelcic, J.C. Crittenden, D.R. Lueking, C.R. Hatch, and P. Ball. 2002. Optimization of biofiltration for odor control: Model calibration, validation and applications. Water Environ. Res. 74:17-27. https://doi.org/10.2175/106143002X139712
  29. Mohseni, M. and D.G. Allen. 2000. Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds. Chem. Eng. Sci. 55:1545-1558. https://doi.org/10.1016/S0009-2509(99)00420-0
  30. Morales, M., G. Frere, M.E. Acuna, F. Perez, S. Revah, and R. Auria. 1996. Influence of mixing on the removal rate of toluene vapors by biofiltration. In: Proceedings of the 89th Annual Meeting & Exhibition of the Air & Waste Management Association. June 23-26, 1996. Nashville. J. Air Waste Manag. Assoc. Pittsburgh, PA, USA.
  31. Myung, S.W., Y.S. Nam, Y.W. Lee, and H.S. Choi. 2003. Removal characteristics of toluene in biofilters packed with reticulated-PU-foams of different porosities. Kor. J. Biotechnol. Bioeng. 18:448-454.
  32. Oh, Y.S., Z. Shareefdeen, B.C. Baltzis, and R. Bartha. 1994. Interactions between benzene, toluene and p-xylene (BTX) during their biodegradation. Biotechnol. Bioeng. 44:533-538. https://doi.org/10.1002/bit.260440417
  33. Ortiz, I. 1998. Biofiltration of gasoline VOCs with different support media. In: Proceedings of the 91st Annual Meeting & Exhibition of the Air & Waste Management Association. June 14-18. San Diego. J. Air Waste Manag. Assoc. Pittsburgh, PA, USA.
  34. Ottengraf, S.P.P. 1986. Exhaust gas purification. In: Biotechnology, a Comprehensive Treatise in 8 Volumes, p. 426-452. Vol. 8. Rehm, H.J. and G. Reed. (eds.). Verlag Chemie. Weinheim, Germany.
  35. Oude Luttighuis, H.H. 1998. Improvement of biofilter-technology by a new type of packing material, In: Proceedings of the 91st Annual Meeting & Exhibition of the Air & Waste Management Association. June 14-18. San Diego. J. Air Waste Manag. Assoc. Pittsburgh, PA, USA.
  36. Pedersen, A.R., S. Moller, S. Molin, and E. Arvin. 1997. Activity of toluene-degrading Pseudomonas putida in the early growth phase of a biofilm for waste gas treatment. Biotechnol. Bioeng. 54:131-142. https://doi.org/10.1002/(SICI)1097-0290(19970420)54:2<131::AID-BIT5>3.0.CO;2-M
  37. Soreanu, G., M. Dixon, and A. Darlington. 2013. Botanical biofiltration of indoor gaseous pollutants - A mini-review. Chem. Eng. J. 229:585-594. https://doi.org/10.1016/j.cej.2013.06.074
  38. United States Environmental Protection Agency (EPA). 2008. Guide to Air Cleaners in the Home. EPA-402-F-08-004.
  39. United States Environmental Protection Agency (EPA). 2009. Residential Air Cleaners, second ed., A Summary of Available Information. EPA 402-F-09-002.
  40. Wang, Z. and J.S. Zhang. 2011. Characterization and performance evaluation of a full scale activated carbon-based dynamic botanical air filtration system for improving indoor air quality, Build. Environ. 46:758-768. https://doi.org/10.1016/j.buildenv.2010.10.008
  41. Wargocki, P., D.P. Wyon, J. Sundell, G. Clausen, and P.O. Fanger. 2000. The effects of outdoor air supply rate in an office on perceived air quality, sick building syndrome (SBS) symptoms and productivity. Indoor Air 10:222-236. https://doi.org/10.1034/j.1600-0668.2000.010004222.x
  42. Williams, T.O. and F.C. Miller. 1992. Biofilters and facility operations Part II. Biocycle 33:75-79.
  43. Wolverton, B.C., A. Johnson, and K. Bounds. 1989. Interior Landscape Plants for Indoor Air Pollution Abatement, Final Report NASA (NASA-TM-101760), National Aeronautics and Space Administration.
  44. Yang, D.S., S.V. Pennisi, K.C. Son, and S.J. Kays. 2009. Screening indoor plants for volatile organic pollutant removal efficiency. HortScience 44:1377-1381.
  45. Yoon, I.K. and C.H. Park. 2002. Effects of gas flow rate, inlet concentration and temperature on biofiltration of volatile organic compounds in a peat-packed biofilter. J. Biosci. Bioeng. 93:165-169. https://doi.org/10.1016/S1389-1723(02)80009-3
  46. Yu, B.F., Z.B. Hu, M. Liu, H.L. Yang, Q.X. Kong, and Y.H. Liu. 2009. Review of research on air conditioning systems and indoor air quality control for human health. Int. J. Refrig. 32:3-20. https://doi.org/10.1016/j.ijrefrig.2008.05.004

Cited by

  1. Green wall technology for the phytoremediation of indoor air: a system for the reduction of high CO2 concentrations vol.10, pp.5, 2017, https://doi.org/10.1007/s11869-016-0452-x
  2. 실내녹화 방법이 온·습도 및 미세먼지 농도에 미치는 영향 vol.45, pp.4, 2015, https://doi.org/10.9715/kila.2017.45.4.001
  3. 인공 습지 모형을 활용한 습지의 미세먼지 저감 효과 vol.22, pp.1, 2015, https://doi.org/10.17663/jwr.2020.22.1.24
  4. 다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구 vol.48, pp.5, 2020, https://doi.org/10.9715/kila.2020.48.5.080
  5. A Pilot Study of Improving the Atmospheric Environment of Classroom for Students&apos; Learning Activities vol.24, pp.2, 2015, https://doi.org/10.11628/ksppe.2021.24.2.179
  6. Growth and Physiological Responses of Four Plant Species to Different Sources of Particulate Matter vol.24, pp.5, 2015, https://doi.org/10.11628/ksppe.2021.24.5.461
  7. Particulate Matter Removal of Three Woody Plant Species, Ardisia crenata, Ardisia japonica, and Maesa japonica vol.13, pp.19, 2021, https://doi.org/10.3390/su131911017