• 제목/요약/키워드: Vertical stress distribution

검색결과 334건 처리시간 0.029초

임프란트를 이용한 고정성 계속가공의치의 FRAMEWORK 형태에 관한 연구 (A SUTDY ABOUT THE SHAPE OF THE FRAMEWORK OF THE FIXED BONE ANCHORED BRIDGE USING DENIAL IMPLANTS)

  • 김태균;이영수;유광희
    • 대한치과보철학회지
    • /
    • 제36권1호
    • /
    • pp.104-119
    • /
    • 1998
  • The purpose of this study was pertinent design of the framework of the fixed bone anchored bridge using implants in the edentulous mandible through analysis of stress distribution by the three dimensional finite element analysis method. The results were as follows: 1. The L-shaped framework was favorable in restoring the edentulous mandible by implants and fixed bone anchored bridge. 2. The structure of the framework should be designed to endure the occlusal load because of stress concentration at the most distal abutment of the framework. 3. The stress at the distal implant where cantilever starts was twice as much as that of other portions. 4. Compressive stress was generated on the framework of the mesial side of the distal implant and extrusive force was induced to the mesially positioned implants. 5. The height of vertical plate was high as possible as can be to distribute stresses concentrating bucco-lingually and labio-lingually in the framework between abutments, 6. Reinforcement of the horizontal plate thickness was needed because stress was loaded more on the horizontal plate than on the vertical plate of the framework. 7. Lengthening of the vertical plate can compensate for any limitations in horizontal plate width.

  • PDF

MEASUREMENT OF TURBULENCE CHARACTERISTICS BY USING PARTICLE TRACKING VELOCIMETRY

  • Yoon, Byung-man;Yu, Kwon-kyu;Marian Muste
    • Water Engineering Research
    • /
    • 제3권2호
    • /
    • pp.135-142
    • /
    • 2002
  • This study investigates the effects of sediment on the flow characteristics such as velocity distribution, friction velocity, turbulent intensities, Reynolds stress, etc. Particle tracking velocimetry (PTY) is used to measure the vertical flow field. Results show that flow over the high bed-load concentration region has larger values of mean velocity and friction velocity and smaller values of turbulence intensities, compared to those for flow over the low bed-load concentration region.

  • PDF

3차원 유한요소법적 분석을 이용한 5종의첨형 임플랜트에 발생하는 응력의 비교연구 (THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF FIVE DIFFERENT TAPER DESIGN IMPLANT SYSTEMS)

  • 변상기;박원희;이영수
    • 대한치과보철학회지
    • /
    • 제44권5호
    • /
    • pp.584-593
    • /
    • 2006
  • Statement of problem : Dental implant which has been developed gradually through many experiments and clinical applications is presently used to various dental prosthetic treatments. To conduct a successful function of implant prosthesis in oral cavity for a long time, it is important that not only structure materials must have the biocompatibility, but also the prosthesis must be designed for the stress, which is occurred in occlusion, to scatter adequately of load support. Therefore, it is essential to give the consideration about the stress analysis of supporting tissues for higher successful rates. Purpose : Recently, many implant manufacturing company produce various taper design of root form implant, the fixture is often selected. However, the stress analysis of taper form fixture still requires more studies. Material and method : This study we make the element models that five implant fixture; Branemark system(Nobel Biocare, Gothenberg, Sweden), Camlog system(Altatec, Germany), Astra system(Astra Tech, Sweden), 3i system(Implant Innovations Inc, USA), Avana system(Osstem, Korea) were placed in the area of mandibular first premolar and prosthesis fabricated, which we compared with stress distribution using the three-dimension finite element analysis under two loading condition. Results : This study compares the aspect of stress distribution of each system with the standard of Von mises stress, among many resulted from finite element analysis so that this research gets the following results. 1. In all implant system, oblique loading of maximum Von mises stress of implant, alveolar bone and crown is higher than vertical loading of those. 2. Regardless of loading conditions and type of system, cortical bone which contacts with implant fixture top area has high stress, and cancellous bone has a little stress. under the vertical loading, maximum Von mises stress is more higher in order of Branemark, Camlog, Astra, 3i, Avana. under the horizontal loading, maximum Von mises is more higher in order of Camlog, Branemark, Astra, 3i, Avana.

An analytical solution for estimating the stresses in vertical backfilled stopes based on a circular arc distribution

  • Jaouhar, El-Mustapha;Li, Li;Aubertin, Michel
    • Geomechanics and Engineering
    • /
    • 제15권3호
    • /
    • pp.889-898
    • /
    • 2018
  • Backfilling of mine stopes with waste rocks or tailings is commonly done to enhance ground stability. It is also an alternative for mining wastes disposal. A successful application of underground backfilling requires an accurate evaluation of the stress distribution in stopes. Over the years, various analytical solutions have been proposed to assess these stresses. Most of them were based on the arching theory, considering uniform stresses across horizontal layer elements. The vertical and horizontal stresses in vertical stopes are principal stresses only along the vertical center line, but not close to the walls where there is rotation of the principal stresses. A few solutions use arc layer elements that follow the iso-contours of the minor principal stresses, based on numerical solutions. In this paper, a modified analytical solution is developed for the stresses in vertical backfilled stopes, considering a circular arc distribution. The proposed solution is calibrated with a few numerical modeling results and then validated by additional numerical simulations under different conditions.

치과 임플랜트 보철 수복시 각 상부구조의 형태에 따라 발생되는 응력의 광탄성학적 분석 (PHOTOELASTIC ANALYSIS OF STRESSES INDUCED BY VARIOUS SUPERSTRUCTURES ON THE ENDOSTEAL IMPLANT)

  • 최영희;조인호
    • 대한치과보철학회지
    • /
    • 제31권4호
    • /
    • pp.679-686
    • /
    • 1993
  • The osseointegrated implant conducts the stress directly to the bone due to lack of cushoning effect of periodontal ligament. So, the design and material quality of superstructure plays an important role in resolution and diffusion of stress. Recently, the various superstructures have been developed to improve esthetics and resolve various complicated conditions. The purpose of this study was to evaluate the stress induced by various system on the osseointegrated implant using UCLA abutment, EsthetiCone abutment, Anatomic abutment as well as Branemark conventional abutment. The stress distribution was evaluated by the photoelastic method which can simultaneously observe all around stress distribution. The superstructures embedded in epoxy resin specimen were loaded at various angle with a force of 15Kg to analyse the stress distribution of the fixture. The results of this study were obtained as follows : 1. Under vertical loading, the large and broad stress was distributed below the fixture in all systems. 2. The fringe order of the stress was increased in proportion to tillting the specimen. The largest stress was shown in 25 angled degree tilting case. 3. The Branemark conventional abutment showed the lowest value, and EsthetiCone abutment, Anatomic abutment and UCLA abutment showed the stress value in accending order.

  • PDF

A two-short-implant-supported molar restoration in atrophic posterior maxilla: A finite element analysis

  • Song, Ho-Yong;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권4호
    • /
    • pp.304-312
    • /
    • 2016
  • PURPOSE. The aim of this study was to investigate the stress distribution of 2-short implants (2SIs) installed in a severely atrophic maxillary molar site. MATERIALS AND METHODS. Three different diameters of internal connection implants were modeled: narrow platform (NP), regular platform (RP), and wide platform (WP). The maxillary first molars were restored with one implant or two short implants. Three 2SI models (NP-oblique, NP-vertical, and NP-horizontal) and four single implant models (RP and WP in a centered or cantilevered position) were used. Axial and oblique loadings were applied on the occlusal surface of the crown. The von Mises stress values were measured at the bone-implant, peri-implant bone, and implant/abutment complex. RESULTS. The highest stress distribution at the bone-implant interface and the peri-implant bone was noticed in the RP group, and the lowest stress distribution was observed in the 2SI groups. Cantilevered position showed unfavorable stress distribution with axial loading. 2SI types did not affect the stress distribution in oblique loading. The number and installation positions of the implant, rather than the bone level, influenced the stress distribution of 2SIs. The implant/abutment complex of WP presented the highest stress concentration while that of 2SIs showed the lowest stress concentration. CONCLUSION. 2SIs may be useful for achieving stable stress distribution on the surrounding bone and implant-abutment complex in the atrophic posterior maxilla.

주변 골흡수 양상에 따른 임플란트와 골의 응력분산에 관한 유한요소 분석 (Influence of bone loss pattern on stress distribution in bone and implant: 3D-FEA study)

  • 이종혁;김성훈;이재봉;한중석;양재호
    • 대한치과보철학회지
    • /
    • 제48권2호
    • /
    • pp.111-121
    • /
    • 2010
  • 연구목적: 본 연구에서는 임플란트 주변 골흡수 양상의 차이가 임플란트와 주변골의 응력 분산에 미치는 영향을 알아보기 위해 수평 골흡수와 임플란트 주변 수직 골흡수에 있어서 주변골의 응력분산, 생물학적 폭경의 형성과 응력분산의 변화 관계 및 병적인 골흡수시의 주변골 응력분포를 유한요소 분석법을 사용하여 비교하고자 하였다. 연구 재료 및 방법:우측 제1 소구치 전방에서 제2 대구치 후방까지의 하악골 모형에서 자연치를 제거하고 직경 4.0 mm, 길이 10.0 mm의 나사형 임플란트를 제1 대구치 부위에 식립하였다. 수평 수직 골흡수의 차이를 보기 위하여 골흡수가 나타나지 않은 형태를 대조군 (I)으로 하여, 1.5 mm 수평 골흡수 (H1.5), 3.0 mm 수평 골흡수 (H3.0) 모형과 이에 상응하는 수직 골흡수 모형 (VW1.5; 1.5 mm, VW3.0; 3.0 mm)을 설계하였고, 생물학적 폭경의 형성과 응력 변화를 관찰하기 위해 생물학적 폭경이 형성되는 과정을 가정한 모형(B0; 피질골에서 임플란트와의 골유착이 없이 밀접하게 접촉된 상태, B1; 피질골에 0.5 mm 폭의 수직 골흡수가 발생한 상태)과 생물학적 폭경이 형성된 상태 (B2)의 모형을 설계하였으며, 생물학적 폭경이 형성된 상태는 0.5 mm 폭을 가지며 임플란트 장축에 경사진 형태를 가지고 있는 1.5 mm 깊이의 수직 골흡수 상태로 형성하였다. 병적 골흡수 상태는 수직 골흡수를 가정한 기존 모형 (VW1.5, VW3.0)과 골흡수가 더 진행된 VW4.5, 기저부에 피질골화가 이루어지지 못한 VO3.0, VO4.5, VO6.0모형을 추가하였다. 하중조건은 수직, 수평하중 그리고 협측 $45^{\circ}$경사하중을 각각 100 N씩 임플란트 보철물 부위에 가하였다. 결과: 분석결과 수평 골흡수와 수직 골흡수에 있어서 전반적인 응력의 크기와 임플란트에 가해지는 응력의 크기는 서로 대응하는 모형에서 유사하였으며, 수직 골흡수에 서 수직력을 받을 때 C2에서 C4로 1.5 mm의 골흡수가 증가하였으나 골에서 발생한 최대응력은 오히려 감소하였다. 수직 골흡수에서 응력이 결손부의 수직 벽을 통해 상부로 분산되는 것을 볼 수 있었다. 생물학적 폭경 형성 단계에서 응력이 가해지는 경우 피질골에서의 결합이 없는 A2에서 피질골 전반에 높은 응력이 발생하였으며 생물학적 폭경의 완성을 가정한 B1에서는 임플란트와 피질골의 경계에서 발생한 응력이 경사진 피질골을 따라서 퍼져나가고 있음을 보였다. 병적 골흡수에서 골결손부 하방에 피질골이 없는 경우는 골흡수에 비례하여 응력이 증가 하였으나 피질골이 있는 경우에는 응력의 증가가 골흡수량의 증가와 비례하지 않음을 보였다. 결론: 임플란트 주변 골흡수의 양이 같아도 흡수된 형태에 따라 발생하는 응력의 크기와 응력분산이 다르게 나타났으며 초기 골흡수 현상은 피질골과의 결합이 약할 때 이 부위에 응력이 증가되어 나타나며, 이후 응력이 감소되어 평형을 이루는 것으로 보인다. 수직 골흡수가 증가할 경우 피질골의 존재 유무가 응력 분산에 큰 영향을 미치며 피질골이 있는 경우 일정 범위에서 응력의 감소가 나타나 응력분산에 유리한 형태에서 골흡수의 진행을 감소시킬 수 있을 것으로 보인다.

Fatigue reliability analysis of steel bridge welding member by fracture mechanics method

  • Park, Yeon-Soo;Han, Suk-Yeol;Suh, Byoung-Chul
    • Structural Engineering and Mechanics
    • /
    • 제19권3호
    • /
    • pp.347-359
    • /
    • 2005
  • This paper attempts to develop the analytical model of estimating the fatigue damage using a linear elastic fracture mechanics method. The stress history on a welding member, when a truck passed over a bridge, was defined as a block loading and the crack closure theory was used. These theories explain the influence of a load on a structure. This study undertook an analysis of the stress range frequency considering both dead load stress and crack opening stress. A probability method applied to stress range frequency distribution and the probability distribution parameters of it was obtained by Maximum likelihood Method and Determinant. Monte Carlo Simulation which generates a probability variants (stress range) output failure block loadings. The probability distribution of failure block loadings was acquired by Maximum likelihood Method and Determinant. This can calculate the fatigue reliability preventing the fatigue failure of a welding member. The failure block loading divided by the average daily truck traffic is a predictive remaining life by a day. Fatigue reliability analysis was carried out for the welding member of the bottom flange of a cross beam and the vertical stiffener of a steel box bridge by the proposed model. Results showed that the primary factor effecting failure time was crack opening stress. It was important to decide the crack opening stress for using the proposed model. Also according to the 50% reliability and 90%, 99.9% failure times were indicated.

유안요소법에 의한 식중응력의 해석 (An Analysis on Stress Distribution within Soft Layer Subject to Embomkment Loading)

  • 박병기;이문수;이진수
    • 한국지반공학회지:지반
    • /
    • 제1권1호
    • /
    • pp.73-84
    • /
    • 1985
  • 본 연구에거는 유한요소법에 의해서 제상하중을 받고 있는 연약지반의 응력분포와 변위를 규명하 였다. 응력에는 체적응력, 간극수압, 연직응력, 수평응력, 전단응력이 포함된다. 유한요소기법으로서 Christian-Boehmer방법을 택하였으며 진배수 및 비배수조건에서 일반탄성model과 참정 Cam-clay model을 지배방정으로 선정하였다. 그 결과는 다음과 같다. 1. 체적응력은 간극수압과 거의 일치한다. 이는 비배수조건에서 전응력이 간극수탄과 같다는 것 을 의미한다. 2. 연직응력은 배수 및 비배수표건이라 구성식의 model에 관계없이 같은 갈을 나타런다. 3. 수평응력은 배수조건과는 무관하지만 구함식의 model에 따라서 다른 값으로 나타난다. 4. 전단응력은 배수조건 및 구성식의 model model에 따라 다른 값이 된다. 수정 Cam-clay에 의한 해석치가 가장 크게 된다. 5. 변위 Vector의 방향은 하중이 증가하는 동안 성토법면근방에서 외향으로 향한다. 6. 변위의 크기는 수정 Cam-clay에 의한 해석이 탄성 model의 2배가 된다.

  • PDF

평판(平板)에 붙은 Stiffener 속에서의 전단응력(剪斷應力)의 분포(分布) (The Maximum Shear Stress Distribution in a Stiffener attached to a Plate)

  • 임상전
    • 대한조선학회지
    • /
    • 제3권1호
    • /
    • pp.19-24
    • /
    • 1966
  • The maximum shear stress distribution in a stiffening flat attached to a plat undergoing a single tensile force has been investigated by photoelastic method. In the experiments a photoelastic model, as shown in Fig. 1, has been studied in the fields of a polariscope, as shown in Fig. 2. Fig. 3 shows the isoclinics and Fig. 4 and 5 are stress trajectories of the principal stresses and maximum shear stresses, respectively. Fig. 6 is the isochromatics in light field. The maximum shear stress at each point in the stiffener were determined from the isochromatics in both of light field of light field and dark field. Then the maximum shear stresses were divided by the average shear stress in the model, to obtain the ratio ${\tau}max/{\tau}av$ at each point. Finaly the variations of the ratio ${\tau}max/{\tau}av$ along the horizontal and vertical lines in the stiffener have been plotted, as shown in Fig. 7 and 8. The conclusions reached in this investigation are as follows: (1) The shear stresses transmitted to the stiffener through the juncture are concentrated on the end portions. (2) The maximum shear stress at the ends of the stiffener reaches to about 4 times of average shear stress. (3) The irregularities in the stress distribution are restricted in the end portions of the stiffener.

  • PDF