Browse > Article
http://dx.doi.org/10.4047/jkap.2010.48.2.111

Influence of bone loss pattern on stress distribution in bone and implant: 3D-FEA study  

Lee, Jong-Hyuk (Department of Prosthodontics, College of Dentistry, Dankook University)
Kim, Sung-Hun (Department of Prosthodontics, School of Dentistry, Seoul National University)
Lee, Jae-Bong (Department of Prosthodontics, School of Dentistry, Seoul National University)
Han, Jung-Suk (Department of Prosthodontics, School of Dentistry, Seoul National University)
Yang, Jae-Ho (Department of Prosthodontics, School of Dentistry, Seoul National University)
Publication Information
The Journal of Korean Academy of Prosthodontics / v.48, no.2, 2010 , pp. 111-121 More about this Journal
Abstract
Purpose: This 3D-FEA study was performed to investigate the influence of marginal bone loss pattern around the implant to the stress distribution. Material and methods: From the right second premolar to the right second molar of the mandible was modeled according to the CT data of a dentate patient. Teeth were removed and an implant ($\Phi\;4.0{\times}10.0mm$) was placed in the first molar area. Twelve bone models were created; Studied bone loss conditions were horizontal bone loss and vertical bone loss, assumed bone loss patterns during biologic width formation, and pathologic vertical bone loss with or without cortification. Axial, buccolingual, and oblique force was applied independently to the center of the implant crown. The Maximum von Mises stress value and stress contour was observed and von Mises stresses at the measuring points were recorded. Results: The stress distribution patterns were similar in the non-resorption and horizontal resorption models, but differed from those in the vertical resorption models. Models assuming biologic width formation showed altered stress distribution, and weak bone to implant at the implant neck area seams accelerates stress generation. In case of vertical bone resorption, contact of cortical bone to the implant may positively affect the stress distribution.
Keywords
Implant; Finite element analysis; Stress distribution; Vertical bone loss; Horizontal bone loss;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged and submerged implants in the canine mandible. J Periodontol 2000;71:1412-24.   DOI   ScienceOn
2 Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontal 2000;71:546-9.   DOI   ScienceOn
3 Mellal A, Wiskott HW, Botsis J, Scherrer SS, Belser UC. Stimulating effect of implant loading on surrounding bone. Comparison of three numerical models and validation by in vivo data. Clin Oral Implants Res 2004;15:239-48.   DOI   ScienceOn
4 Hermann JS, Buser D, Schenk RK, Higginbottom FL, Cochran DL. Biological width around titanium implants. A physiologically formed and stable dimension over time. Clin Oral Implants Res 2000;11:1-11.   DOI   ScienceOn
5 Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded nonsubmerged implants in the canine mandible. J Periodontol 2001;72:1372-83.   DOI
6 Engquist B, Astrand P, Dahlgren S, Engquist E, Feldmann H, Grondahl K. Marginal bone reaction to oral implants: a prospective comparative study of Astra tech and Bra􀆆nemark system implants. Clin Oral Implants Res 2002;13:30-7.   DOI   ScienceOn
7 Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent2006;26;9-17.
8 Wyatt CC, Zarb GA. Bone level changes proximal to oral implants supporting fixed partial prostheses. Clin Oral Implants Res 2002;13:162-8.   DOI   ScienceOn
9 Spiekermann H, Jansen VK, Richter EJ. A 10-year follow-up study of IMZ and TPS implants in the edentulous mandible using barretained overdentures. Int J Oral Maxillofac Implants 1995;10:231-43.
10 Barbier L, Schepers E. Adaptive bone remodeling around oral implants under axial and nonaxial loading conditions in the dog mandible. Int J Oral Maxillofac Implants 1997;12:215-23.
11 Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three dimensional finite element analysis. Clin Oral Implants Res 2004;15:401-12.   DOI   ScienceOn
12 Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1:11-25.
13 Hermann JS, Buser D, Schenk RK, Schoolfield JD, Cochran DL. Biologic width around one- and two-piece titanium implants. A histometric evaluation of unloaded nonsubmerged and submerged implants in the canine mandible. Clin Oral Implants Res 2001;12:559-7.   DOI   ScienceOn
14 Hansson S. The implant neck: smooth or provided with retention elements. A biomechanical approach. Clin Oral Implants Res 1999;10:394-405.   DOI   ScienceOn
15 Schwartz-Arad D, Herzberg Ran, Levin L. Evaluation of long-term implant success. J Periodontol 2005;76:1623-8.   DOI   ScienceOn
16 Lindhe, Berglundh T, Ericsson I, Liljenberg B, Marinello C. Experimental breakdown of peri-implant and periodontal tissues. A study in the beagle dog. Clin Oral Implants Res 1992;3:9-16.   DOI   ScienceOn
17 Smith DE, Zarb GA. Criteria for success of osseointegrated endosseous implants. J Prosthet Dent 1989;62:567-72.   DOI   ScienceOn
18 Goodacre CJ, Kan JY, Runqcharassaeng K. Clinical complications of osseointegrated implants. J Prosthet Dent 1999;81:537-52.   DOI   ScienceOn
19 $H/"{a}mmerle$ CH, Bragger U, Bu ¨rgin W, Lang NP. The effect of subcrestal placement of the polished surface of ITI implants on marginal soft and hard tissues. Clin Oral Implants Res 1996;7:111-9.   DOI   ScienceOn
20 Alomrani AN, Hermann JS, Jones AA, Buser D, Schoolfield J, Cochran DL. The effect of a machined collar on coronal hard tissue around titanium implants: a radiographic study in the canine mandible. Int J Oral Maxillofac Implants 2005;20:677-86.
21 Lang NP, Bragger U, Walther D, Beamer B, Kornman KS. Ligature-induced peri-implant infection in cynomolgus monkeys. I. Clinical and radiographic findings. Clin Oral Implants Res 1993;4:2-11.   DOI   ScienceOn
22 Adell R, Lekholm U, Rockler B, Bra􀆆nemark PI. A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. Int J Oral Surg 1981;10:387-416.   DOI
23 Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D. Biologic width around titanium implants. A histometric analysis of the implanto-gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J Periodontol 1997;68:186-98.   DOI   ScienceOn
24 Hermann JS, Cochran DL, Nummikoski PV, Buser D. Crestal bone changes around titanium implants. A radiographic evaluation of unloaded nonsubmerged and submerged implants in the canine mandible. J Periodontol 1997;68:1117-30.   DOI   ScienceOn
25 Isidor F. Influence of force on peri-implant bone. Clin Oral Implants Res 2006;17:8-18.
26 Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18:357-68.
27 Hansson S. Surface roughness parameters as predictors of anchorage strength in bone:a critical analysis. J Biomech 2000;33:1297-303.   DOI   ScienceOn
28 Saadoun AP, Le Gall M, Kricheck M. Microbial infections and occlusal overload: causes of failure in osseointegrated implants. Pract Periodontics Aesthet Dent 1993;5:11-20.
29 Albrektsson T, Wennerberg A. The impact of oral implants-past and future, 1966-2042. J Can Dent Assoc 2005;71:327.
30 Misch CE, Suzuki JB, Misch-Dietsh FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: literature support. Implant Dent 2005;14:108-16.   DOI   ScienceOn
31 Bragger U. Use of radiographs in evaluating success, stability and failure in implant dentistry. Periodontol 2000 1998;17:77-88.   DOI   ScienceOn
32 Merickse-Stern R, Aerni D, Geering AH, Buser D. Long-term evaluation of non-submerged hollow cylinder implants. Clinical and radiographic results. Clin Oral Implants Res 2001;12:252-9.   DOI   ScienceOn
33 Wiskott HW, Belser UC, Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res 1999;10:429-44.   DOI   ScienceOn
34 Cha SB, Lee KB, Jo KH. Finite element approach to investigate the influence of the design configuration of the ITI solid implant on the bone stresses during the osseointegration process. J Korean Acad Prosthodont 2006;44:217-28.   과학기술학회마을
35 Jung YC, Han CH, Lee KW. A 1-year radiographic evaluation of marginal bone around dental implants. Int J Oral Maxillofac Implants 1996;11:811-8.
36 Duyck J, Ronold HJ, van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res 2001;12:207-18.   DOI   ScienceOn