• Title/Summary/Keyword: Vertical stability

Search Result 903, Processing Time 0.025 seconds

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.498-507
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF

Evaluation of Hydraulic Conductivity of Bentonite Filter Cake Using Modified Fluid Loss Test

  • Nguyen, The Bao;Lee, Chul-Ho;Yang, Jung-Hun;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1502-1511
    • /
    • 2008
  • The mixture of bentonite powder and water is generally used to maintain the stability of excavation surface during the construction of vertical cutoff walls. The filter cake on the sidewall surface is the result of filtration of slurry into the adjacent soil formation. The filter cake is believed to have a very low hydraulic conductivity compared to that of the cutoff wall. This paper evaluates hydraulic conductivities of bentonite filter cakes set up with three types of bentonites under various pressure levels. A modified fluid loss test was employed in this experiment. Theory of filtration process was reviewed to explain the procedure in the present experiment. Hydraulic conductivity of the filter cakes with consideration of the filter medium resistance was evaluated. The results of the experiment with two calculation methods and discussion are presented to show the efficiency of the modified fluid loss test.

  • PDF

Characteristic Study According to the Shape of Field in the Air-cored HTS Synchronous Generator (공심형 HTS 동기발전기의 계자 형상 변화에 따른 특성연구)

  • Jo, Young-Sik;Ahn, Ho-Jin;Hong, Jung-Pyo;Lee, Ju;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.849-851
    • /
    • 2000
  • The value of $I_c$(critical current) in HTS (High Temperature Superconductor) tape has a great influence on $B{\bot}$ (vertical field). Therefore, in shape design of field coil for the HTSG(High Temperature Superconducting Generator), a method to reduce the $B{\bot}$ should be considered in order to maintain the stability and substantial improvement on the performance. On the basis of the magnetic field analysis, this paper deals with various field coil shape to obtain small $B{\bot}$ by using Biot-Savart's law and image method. Moreover the analysis is verified by comparison with experimental results. And also this paper presents the advanced model by using 3D FEM(3 Dimensional Finite Element Method), in which flux density at armature is calculated in 5kVA class HTSG.

  • PDF

Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction

  • Kou, Miaomiao;Liu, Xinrong;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.283-296
    • /
    • 2020
  • The coupled hydro-mechanical loading conditions commonly occur in the geothermal and petroleum engineering projects, which is significantly important influence on the stability of rock masses. In this article, the influence of flaw inclination angle of fracture behaviors in rock-like materials subjected to both mechanical loads and internal hydraulic pressures is experimentally studied using the 3-D X-ray computed tomography combined with 3-D reconstruction techniques. Triaxial compression experiments under confining pressure of 8.0 MPa are first conducted for intact rock-like specimens using a rock mechanics testing system. Four pre-flawed rock-like specimens containing a single open flaw with different inclination angle under the coupled hydro-mechanical loading conditions are carried out. Then, the broken pre-flawed rock-like specimens are analyzed using a 3-D X-ray computed tomography (CT) scanning system. Subsequently, the internal damage behaviors of failed pre-flawed rock-like specimens are evaluated by the 3-D reconstruction techniques, according to the horizontal and vertical cross-sectional CT images. The present experimental does not only focus on the mechanical responses, but also pays attentions to the internal fracture characteristics of rock-like materials under the coupled hydro-mechanical loading conditions. The conclusion remarks are significant for predicting the rock instability in geothermal and unconventional petroleum engineering.

A Safety Analysis of the BTR Method by Construction Sequence (BTR공법의 시공단계별 안전성 해석)

  • Chung, Kuang-Mo;Lee, Won-Hee;Lee, Sang-Hyun;Bang, Myung-Seok
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.101-108
    • /
    • 2012
  • In this study was conducted numerical analysis to evaluate the stability of BTR(Built-in Timber Roof Tunneling Method), which is one of construction methods of underground structures in the non-opening state. The discretion method was applied to individually model reinforcing members of BTR, and the homogeneity analysis technic by area ratio was used to verify the feasibility comparing this result with that from conventional analysis method. The parameter study was performed to evaluate the effect varying ground depth, distance length of reinforcing supports and to verify the field applicability of new analysis method. The results showed the very precise value with allowable error, so this method can be applied in the field, The more length of supporting members caused the more vertical displacement and the top displacement increment of support members is larger than that of ground surace. The effect of ground depth was more impressive than that of distance length of reinforcing supports.

Application of a discrete vortex method for the analysis of suspension bridge deck sections

  • Taylor, I.J.;Vezza, M.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.333-352
    • /
    • 2001
  • A two dimensional discrete vortex method (DIVEX) has been developed to predict unsteady and incompressible flow fields around closed bodies. The basis of the method is the discretisation of the vorticity field, rather than the velocity field, into a series of vortex particles that are free to move in the flow field that the particles collectively induce. This paper gives a brief description of the numerical implementation of DIVEX and presents the results of calculations on a recent suspension bridge deck section. The predictions for the static section demonstrate that the method captures the character of the flow field at different angles of incidence. In addition, flutter derivatives are obtained from simulations of the flow field around the section undergoing vertical and torsional oscillatory motion. The subsequent predictions of the critical flutter velocity compare well with those from both experiment and other computations. A brief study of the effect of flow control vanes on the aeroelastic stability of the bridge is also presented and the results from DIVEX are shown to be in accordance with previous analytical and experimental studies. In conclusion, the results indicate that DIVEX is a very useful design tool in the field of wind engineering.

A Fast Inversion Method for Interpreting Single-Hole Electromagnetic Data (단일 시추공 전자탐사 자료 해석을 위한 빠른 역산법)

  • Kim, Hee-Joon;Lee, Jung-Mo
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.316-322
    • /
    • 2002
  • A computationally efficient inversion scheme has been developed using the extended Born or localized nonlinear approximation to analyze electromagnetic fields obtained in a single-hole environment. The medium is assumed to be cylindrically symmetric about the borehole, and to maintain the symmetry vertical magnetic dipole source is used throughout. The efficiency and robustness of an inversion scheme is very much dependent on the proper use of Lagrange multiplier, which is often provided manually to achieve desired convergence. In this study, an automatic Lagrange multiplier selection scheme has been developed to enhance the utility of the inversion scheme in handling field data. The inversion scheme has been tested using synthetic data to show its stability and effectiveness.

Flow Analysis around Multi-Legged Underwater Robot "Crabster" to Evaluate Current Loads (다관절 해저로봇 'Crabster'에 작용하는 조류하중 산정 및 유동해석)

  • Park, Yeon-Seok;Kim, Wu-Joan;Jun, Bong-Huan
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.47-54
    • /
    • 2012
  • In this study, numerical simulations were performed to evaluate the current loads acting on the multi-legged underwater robot "Crabster" with a variety of incident angles using the ANSYS-CFX package. The Reynolds-averaged Navier-Stokes equations were solved to simulate the fluid flow around Crabster to calculate the forces and moments induced by incoming currents with various angles. First, to assess the posture stability of the body, the forces and moments were calculated with various incident angles when the current acted in the vertical and horizontal directions. Next, two forms of legs (box and foil types) were evaluated to determine the hydrodynamic force variation. Finally, the current forces and moments acting on the Crabster body with the legs attached were estimated.

Comparative Analysis of Nordic Walking and Normal Gait Based on Efficiency (노르딕 워킹과 일반 보행의 효율성 비교 분석)

  • Kim, Ro-Bin;Cho, Joon-Haeng
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.365-372
    • /
    • 2010
  • The purpose of this study were to analyze the changes in kinematic and kinetic parameters and to find biomechanical benefits of Nordic Walking and normal gait performed under the same velocity. Nine participants(age: $26.73{\pm}3.28$ year, height: $182.45{\pm}4.62\;cm$, weight: $76.59{\pm}6.84\;kg$) was chosen. The velocity of gait was set by 5.75 km/h which was made by a Nordic Walking professional. The data were collected by using VICON with 8 cameras to analyze kinematic variables with 200 Hz and force platform to analyze kinetic variables with 2000 Hz. The results of this study were as follows. First, when compared with Normal gait, Nordic Walking group showed decreased Plantarflexion angle and ROM. Second, Nordic Walking group showed decreased knee flexion angle and ROM. Third, Nordic Walking group showed increased hip joint movement. Fourth, Nordic Walking group showed higher active GRF but decreased loading rate from delayed Peak Vertical GRF time and increased impulse. Fifth, Nordic Walking group showed longer ground contact time. Through this study, we found that Nordic Walking showed higher stability and efficiency during gait than normal gait and that Nordic Walking may help people who have walking difficulties.

Study on the Design Constraints of the Wall-Climbing Mobile Robot Using Permanent Magnetic Wheels (Part 1 - Design Guideline) (영구 자석 바퀴를 이용한 벽면 이동 로봇의 설계시의 제약 사항들에 대한 연구 (Part 1 - 설계지침))

  • 한승철;이화조;김은찬
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.69-76
    • /
    • 2004
  • Most tasks of the large vertical or ceiling structures have been carried out by human power. Those tasks require us much operation costs and times, safety devices, etc. So the need of automation for those tasks have been rising. That automation needs a wall-climbing mobile vehicle. Most former researches are things about attachment devices and moving mechanisms. A wall-climbing mobile vehicle must be designed by a method different from the case of the vehicle of the horizontal environment. That is because gravity acts as a negative role on the stability of a wall-climbing vehicle. In this thesis, the particular shape characteristics of a wall-climbing mobile vehicle are derived by the wall-environment modeling. In addition, some design constraints of the permanent magnetic wheel as an attachment device was studied. According to those requirements and constraints, one specific wall-climbing mobile vehicle was designed and some experiments were made on the attachment ability of that vehicle.