• Title/Summary/Keyword: Vertical stability

Search Result 903, Processing Time 0.031 seconds

A Study on A Spacecraft Alignment Measurement System (위성체 얼라인먼트 측정 시스템에 관한 연구)

  • Park, Hong-Chul;Son, Young-Seon;Choi, Jong-Yeon;Yoon, Yong-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.7
    • /
    • pp.98-104
    • /
    • 2004
  • A spacecraft alignment measurement requires highly precise measurement accuracy which is less than ${\pm}0.5^{\circ}$. In general, such an alignment measurement has been performed by using three or more theodolites. However, it contains the latent accuracy error because of a position stability of spacecraft, etc. The new alignment measurement system which consists of a theodoilte, a rotating table and a digital inclinometer has been developed to possibly to possibly reduce the error. This paper describes the concept and methodology of methodology of measurement system. It was found that new measurement system can provide more accurate results than the conventional system.

Sequential movement of the caisson on soft clays in the construction of the port (연약 지반 지역의 항만 시공 단계에 따른 케이슨 변위 거동)

  • Choo, Yoon-Sik;Jung, Young-Hoon;Hwang, Se-Hwan;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.199-209
    • /
    • 2009
  • The movement of the caisson used to construct a wharf front can affect functional performance of the port. Sequential movement of caissons at each stage of the construction is essential in the overall design as well as the stability of the port. It is common that back-analysis using the previous measurement is performed to predict the caisson movement, while there is no intensive study on sequential movement of the caissons according to the construction stage. In the study, we analyzed the pattern of the movement of caissons as a port is constructed. To simulate the construction of the port, the finite element method (FEM) is employed. The computed result shows that the caisson moves differently at each construction stage. When the caisson is being installed, the displacement of the caisson takes place mainly in vertical direction. In next stage of filling rocks behind the caisson, the top of the caisson move toward shore, while the bottom moves toward sea, thus rotating the caisson. The maximum rotation of the caisson takes place in the stage of filling rocks behind the caisson.

  • PDF

A Analytical Study on Influence of Gradients on Section Characteristics of River Banks (하천 제방 단면 특성이 동수경사에 미치는 영향에 관한 해석적 연구)

  • Byun, Yoseph;Kim, Jongil;Baek, Seungin;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.13-19
    • /
    • 2012
  • Due to recent climate change, big typhoon and heavy rainfall happen frequently not only in Korea but also all over the world. It leads to collapse of levee by extraordinary flood. It lead to collapse of levees by extraordinary flood. These natural disasters give the life and property damages in near region. In this study, it was performed that a stability in levee using seepage analysis. It has been evaluated hydraulic gradient of exit zone according to variations in levee crest width, gradient. As a result, it showed that hydraulic gradient of exit zone was decreased due to increase of levee crest width and gradient, and it was evaluated that vertical hydraulic gradient was decreased than that of the horizontal hydraulic gradient.

Static behavior of Kiewitt6 suspendome

  • Li, Kena;Huang, Dahai
    • Structural Engineering and Mechanics
    • /
    • v.37 no.3
    • /
    • pp.309-320
    • /
    • 2011
  • As a new type of large-span space structure, suspendome is composited of the upper single-layer reticulated shell and the lower cable-strut system. It has better mechanical properties compared to single-layer reticulated shell, and the overall stiffness of suspendome structure increases greatly due to the prestress of cable. Consequently, it can cross a larger span reasonably, economically and grandly with high rigidity, good stability and simple construction. For a better assessment of the advantages of mechanical characteristic of suspendome quantitatively, the static behavior of Kiewitt6 suspendome was studied by using finite element method, and ADINA was the software application to implement the analysis. By studying a certain suspendome, the internal forces, deformation and support constrained forces of the structure were obtained in this paper. Furthermore, the influences of parameters including prestress, stay bar length, cross-sectional area and rise-to-span ratio were also discussed. The results show that the increase of prestress and vertical stay bar length can improve the stiffness of suspendome; Cross-sectional area has nearly no impact on the static behavior, and the rise-to-span ratio is the most sensitive parameter.

Comparison of Chord method with Surveying in Track irregularity Measurement (측량과 현방식 궤도틀림 측정 비교)

  • Lee, Jee-Ha;Lee, Sang-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1647-1652
    • /
    • 2008
  • Track geometry consists of tangent and curved lines, which caused undesirable changes in initial track geometry by traffic loads. The bigger the changes are, the worse the riding comfort and running stability of train. This is so-called track irregularity and is the most important quality parameters of ballasted track. To be able to objectively assess track irregularity, track geometry should be able to be measured. Practically, railway companies use moving chord method, this method determine versine values via a chord. The versine is the vertical distance to curve measured in the middle of the chord. This type of method measures only versine of track irregularity curve by transfer function from specific property of measuring tool. In this report, review the characteristics of two types of measuring tools by comparing the measurements. The one is GRP-1000 system, optical surveying system with Total station and lazar prism trolly. This calculates track geometry by surveying absolute coordinates of two points each on both rail heads. The other is Trackmaster, measures versine with 2m of chord length.

  • PDF

Efficient crosswell EM Tomography using localized nonlinear approximation

  • Kim Hee Joon;Song Yoonho;Lee Ki Ha;Wilt Michael J.
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.51-55
    • /
    • 2004
  • This paper presents a fast and stable imaging scheme using the localized nonlinear (LN) approximation of integral equation (IE) solutions for inverting electromagnetic data obtained in a crosswell survey. The medium is assumed to be cylindrically symmetric about a source borehole, and to maintain the symmetry a vertical magnetic dipole is used as a source. To find an optimum balance between data fitting and smoothness constraint, we introduce an automatic selection scheme for a Lagrange multiplier, which is sought at each iteration with a least misfit criterion. In this selection scheme, the IE algorithm is quite attractive for saving computing time because Green's functions, whose calculation is a most time-consuming part in IE methods, are repeatedly re-usable throughout the inversion process. The inversion scheme using the LN approximation has been tested to show its stability and efficiency, using both synthetic and field data. The inverted image derived from the field data, collected in a pilot experiment of water-flood monitoring in an oil field, is successfully compared with that derived by a 2.5-dimensional inversion scheme.

Characteristics of Track Behaviors according to Accelerated Tilting Train Speed (틸팅차량 증속에 따른 기존선 궤도의 거동 특성)

  • Shin, Tae-Hyoung;Choi, Jung-Youl;Eum, Ki-Young;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1653-1661
    • /
    • 2008
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. In the area of wayside structure, the stability of track structure and train run shall be evaluated through the review of impact by increased speed by developed train on track structure. The study thus was intended to evaluate the impact on track while a tilting train is running the conventional line(ballast track), which is vulnerable to accelerated train speed. The evaluation of tilting train test running the part of Honam line was conducted to identify the impact on existing track performance by tilting train. To identify the performance of each part of track components while tilting train and high speed train were running the existing line, wheel load, rail bending stress, vertical displacement of rail and sleeper were compared so as to evaluate the expected impact by tilting train for improving the train speed.

  • PDF

Application of Pile Net Method to restrain the Soft Ground settlement in Concrete Track (콘크리트궤도 침하억제를 위한 파일네트공법 적용성 검토)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Bang, Eui-Seok;Jung, Jang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1695-1704
    • /
    • 2008
  • The problems associated with constructing high-speed concrete track embankments over soft compressible soil has lead to the development and/or extensive use of many of the ground improvement techniques used today. Drains, surcharge loading, and geosynthetic reinforcement, have all been used to solve the settlement and embankment stability issues associated with construction on soft soils. However, when time constraints are critical to the success of the project, owners have resorted to another innovative approach. Especially, the design criteria of residual settlement is limited as 30mm for concrete track embankment, it is very difficult to satisfy this standard using the former construction method. Pile net method consist of vertical columns that are designed to transfer the load of the embankment through the soft compressible soil layer to a firm foundation and one or more layers of geosynthetic reinforcement placed between the top of the columns and the bottom of the embankment. This paper will present the guidelines for the design of pile net method to supported embankments. These guidelines were developed based on a review of current design methodologies and a parametric study of design variables using numerical modeling.

  • PDF

A Semi-Analytic Approach for Analysis of Parametric Roll (준해석적 방법을 통한 파라메트릭 횡동요 해석)

  • Lee, Jae-Hoon;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.3
    • /
    • pp.187-197
    • /
    • 2015
  • This study aims the development of a semi-analytic method for the parametric roll of large containerships advancing in longitudinal waves. A 1.5 Degree-of-Freedom(DOF) model is proposed to account the change of transverse stability induced by wave elevations and vertical motions (heave and pitch). By approximating the nonlinearity of restoring moment at large heel angles, the magnitude of roll amplitude is predicted as well as susceptibility check for parametric roll occurrence. In order to increase the accuracy of the prediction, the relationship between righting arm(GZ) and metacentric height(GM) is examined in the presence of incident waves, and then a new formula is proposed. Based on the linear approximation of the mean and first harmonic component of GM, the equation of parametric roll in irregular wave excitations is introduced, and the computational results of the proposed model are validated by comparing those of weakly nonlinear simulation based on an impulse-response-function method combined with strip theory. The present semi-analytic doesn’ t require heavy computational effort, so that it is very efficient particularly when numerous sea conditions for the analysis of parametric roll should be considered.

Centrifuge Model Experiments on Behaviour Characterisitc in Forced Replacement Method (강제치환 거동특성에 관한 원심모형실험)

  • Lee, Jong-Ho;Park, Byung-Soo;Jeong, Gil-Soo;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.131-137
    • /
    • 2003
  • This thesis is results of centrifuge model experiments to investigate the behavior of replacement method in dredged and reclaimed ground. For experimental works, centrifuge model tests were carried out to investigate the behavior of replacement method in soft clay ground. Basic soil property tests were performed to find mechanical properties of clay soil sampled from the southern coast of Korea which was used for ground material in the centrifuge model tests. Reconstituted clay ground of model was prepared by applying preconsolidation pressure in 1g condition with specially built model container. Centrifuge model tests were carried out under the artificially accelerated gravitational level of 50g. Replacing material of leads having a certain degree of angularity was used and placed until the settlement of embankment of replacing material was reached to the equilibrium state. Vertical displacement of replacing material was monitored during tests. Depth and shape of replacement, especially the slope of penetrated replacing material and water contents of clay ground were measured after finishing tests. Model tests of investigating the stability of embankment after backfilling were also performed to simulate the behavior of the dike treated with replacement and backfilled with sandy material. As a result of centrifuge model test, the behavior of replacement, the mechanism of the replacing material being penetrated into clay ground and depth of replacement were evaluated.

  • PDF