• Title/Summary/Keyword: Vertical stability

Search Result 898, Processing Time 0.03 seconds

Dynamic Stability Effect of Applicable Core and Neuromuscular Training for 12 Weeks (12주간 적용 가능한 코어, 신경근 훈련의 동적 안정성 효과)

  • Kim, Kyoung-Hun;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.1
    • /
    • pp.101-108
    • /
    • 2010
  • Recently, core and neuromuscular training(CNT) is emerging as a clinically relevant tool to improve neuromuscular control and to prevent sports injuries. The purpose of this study was to examine the effect of a 12 weeks CNT program on the dynamic stability after drop landing. The subjects attempted drop landing onto the force platform on single foot from a 40 cm height distance. The collected data was used to calculate the dynamic stability index. The Dynamic stability index was derived by measuring the medial-lateral stability index(MLSI), anterior-posterior stability index(APSI), and the vertical stability index(VSI). In comparison to the control group, the MLSI and APSI showed no difference, yet, it resulted in higher VSI. The results of this study suggest that CNT is worthwhile to be considered as a way to improve neuromuscular control and to prevent traumatic injuries. However, the results are taking into consideration to discuss the limitations of CNT and suggested future approaches.

An Evaluation for Vertical Structural Members Compensated during Design Process and These Compensated during Construction of High-rise Building under Seismic Load (설계 및 시공과정에 보정된 고층건물 구조재의 지진하중에 의한 영향 평가)

  • 정은호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.93-102
    • /
    • 1999
  • Increased height of buildings causes severe shortening of vertical structural members due to the accumulated axial load. It not only decreases the serviceability of a structure but also affects significantly the stability of a structure itself due to the secondary stress. The main purpose of estimating the shortening of vertical structural members is to compensate the differential shortening of adjacent members. This paper presents the comparison of stresses between the vertical structural members compensated during construction process and these compensated during design process under the seismic load and represents that the precise compensation of vertical structural members is important.

  • PDF

An analytical solution for estimating the stresses in vertical backfilled stopes based on a circular arc distribution

  • Jaouhar, El-Mustapha;Li, Li;Aubertin, Michel
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.889-898
    • /
    • 2018
  • Backfilling of mine stopes with waste rocks or tailings is commonly done to enhance ground stability. It is also an alternative for mining wastes disposal. A successful application of underground backfilling requires an accurate evaluation of the stress distribution in stopes. Over the years, various analytical solutions have been proposed to assess these stresses. Most of them were based on the arching theory, considering uniform stresses across horizontal layer elements. The vertical and horizontal stresses in vertical stopes are principal stresses only along the vertical center line, but not close to the walls where there is rotation of the principal stresses. A few solutions use arc layer elements that follow the iso-contours of the minor principal stresses, based on numerical solutions. In this paper, a modified analytical solution is developed for the stresses in vertical backfilled stopes, considering a circular arc distribution. The proposed solution is calibrated with a few numerical modeling results and then validated by additional numerical simulations under different conditions.

Development of Vibration Compensator for Vertical Vibration Damping of Ships (선박의 수직방향 진동 감쇠를 위한 진동보상기의 개발)

  • Jung, Min Je;Kim, Tae Ok;Ahn, Jung Hwan;Kim, Hwa Young
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.205-210
    • /
    • 2020
  • The aim of this study is to develop a vertical vibration compensator that attenuates the vertical vibration of ships. The vibration compensator was designed according to the principle of generating vertical excitation forces by rotating two eccentric bodies of the same mass in opposite directions at the same rotational speed. In addition, the structural stability was analyzed using the finite element method. The maximum stress in the drive shaft was 95.6 MPa, which was approximately 35% of the allowable stress of the shaft material (SM45C, 270 MPa). The acceleration signals of the vibrator compensator body and the testbed were determined to evaluate the efficiency of the vibration compensator and the designed excitation forces. Subsequently, the excitation forces were estimated based on the relationship between force and acceleration. The estimated results were very close to the theoretical values with an error of less than 3%.

Shear Strength of Vertical Joints in Precast Concrete Panel with Shear Key (전단키를 갖는 프리캐스트 콘크리트 패널 수직접합부의 전단강도)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.151-158
    • /
    • 2019
  • A concrete core is used widely as lateral stability systems in high-rise modular buildings. As an alternative to traditional cast in-situ core, the precast concrete(PC) method can accelerate the construction of reinforced concrete cores. A core composed of precast elements differs from a in-situ core in having connections between the precast elements. The typical vertical connection between PC panels is consisted of shear keys, loop bars, lacer bars and grout. In this study, the effect of vertical connection components on shear strength is investigated experimentally. The test results show that the contribution to the shear strength is greater in order of grout strength, shear keys, lacer bars and loop bars. In addition, the numerical models to estimate the shear strength according to two crack patterns in the vertical joint of the PC panels are derived. The feasibility of the numerical models is evaluated by comparing the estimated shear strength and the test results.

Nonlinear aerostatic stability analysis of Hutong cable-stayed rail-cum-road bridge

  • Xu, Man;Guo, Weiwei;Xia, He;Li, Kebing
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.485-503
    • /
    • 2016
  • To investigate the nonlinear aerostatic stability of the Hutong cable-stayed rail-cum-road bridge with ultra-kilometer main span, a FEM bridge model is established. The tri-component wind loads and geometric nonlinearity are taken into consideration and discussed for the influence of nonlinear parameters and factors on bridge resistant capacity of aerostatic instability. The results show that the effect of initial wind attack-angle is significant for the aerostatic stability analysis of the bridge. The geometric nonlinearities of the bridge are of considerable importance in the analysis, especially the effect of cable sag. The instable mechanism of the Hutong Bridge with a steel truss girder is the spatial combination of vertical bending and torsion with large lateral bending displacement. The design wind velocity is much lower than the static instability wind velocity, and the structural aerostatic resistance capacity can meet the requirement.

Influence of Joint Spacing to Rock Slope Stability (절리 간격이 암반 사면의 안정성에 미치는 영향)

  • 윤운상;권혁신;김정환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.511-518
    • /
    • 2000
  • Characteristics of joint orientation, length, spacing and their distribution are very important factors for slope stability, Especially, the effect of joint spacing is an essential factor of slope stability. This study is to analyze the effect of joint spacing in cases of sliding and toppling, which is a typical failure mode. Joint spacing can divided into vertical spacing(spacing) and horizontal spacing(gap). And then, the spacing/length ratio of joint directly affect rock slope failure. When the ratio is below 0.05, the possibility of failure is rapidly increased. In case of toppling, the possibility of failure depends on the ratio of spacing to height of slope ratio slope. As the ratio decreases, the possibility of toppling failure increased. The critical ratio of spacing to height of slope is determined by the dip angle of the slope and the orientation of joint sets.

  • PDF

Effect of External Damping and Tip Mass on Dynamic Stability of Pipes Conveying Fluid (유동유체에 의한 파이프의 동적안정성에 미치는 외부감쇠와 말단질량의 영향)

  • Kim, H.J.;Ryu, B.J.;Jung, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.569-574
    • /
    • 2009
  • The paper presents the influences of the external damping and the tip mass on dynamic stability of a vertical cantilevered pipe conveying fluid. In general, real pipe systems may have some valves and attached mechanical parts, which can be regarded as attached lumped masses and support-dampers. The support-dampers can be assumed as viscous dampers. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some numerical results using Galerkin's method are presented. Critical flow velocities and stability maps of the pipe with external dampers and tip mass are obtained for various tip mass ratios, external damping coefficients and positions of the viscous dampers.

Numerical Modeling of Short-Time Scale Nonlinear Water Waves Generated by Large Vertical Motions of Non-Wallsided Bodies (Non-Wallsided 물체의 연직운동에 의해 발생된 파의 비선형 해석을 위한 수치해석 모형의 연구)

  • Park, Jong-Hwan;;Troesch, Armin W.
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.33-55
    • /
    • 1993
  • 선수충격파의 문제를 푸는데 있어서 Boundary Integral Method(BIM)의 여러가지 수치 해석방법이 검토되었으며, 특히 여러가지 Time stepping scheme, Green function, far-field 조건등에 따른 수치해석안정성과 정확성의 상관관계가 연구되었다. von Neumann 안정성해석과 matrix 안정성해석 등을 이용한 선형 안정성해석을 기초로하여, 수치해석방법의 안정성 여부를 체계적으로 조사할 수 있는 parameter(Free Surface Stability number)를 설정하고, 이 parameter의 변화에 따른 비선형 운동해석을 연구하였다. 그 결과 비선형성이 심하지 않은 기진파의 경우에서는 비선형 운동해석의 수치해석 안정성의 선형 수치해석 안정성과 큰 차이가 없음을 알 수 있게 된다.

  • PDF

The impact of sidetracking on the wellbore stability

  • Elyasi, Ayub;Goshtasbi, Kamran
    • Advances in Energy Research
    • /
    • v.3 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In the past sidetracking was the means to bypass a damaged zone or to correct the direction of a wellbore. Nowadays, this method is very common and useful in relocating the bottom of a wellbore in a more productive zone and consequently enhancing the production of a reservoir by saving a significant amount of time and money. In this paper, the stability of the bend area is assessed considering varied conditions of stress regime and sidetrack orientation. In general, the stress regime and the orientation of the principal stresses have negligible effect on the stability of the sidetrack compared to sidetrack inclination. On the other hand, the sidetrack deviation angle from the vertical main well plays the major role in the stability of the bend area.