• Title/Summary/Keyword: Vertical shortening

Search Result 62, Processing Time 0.032 seconds

Variations of Column Shortening with Parameters (매개변수에 따른 기둥축소량 변화에 관한 연구)

  • 정은호;김형래
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.59-67
    • /
    • 2000
  • With increased height of structure, the effect of column shortening need special consideration in the design and construction of high-rise buildings. The shortening of each column affects nonstructural members such as partitions, cladding, and M/E systems, which are not designed to carry gravity forces. The slabs and beams will tilt due to the cumulative differential shortening of adeacent vertical members. The main purpose of estimating the total shortening of vertical structural member is to compensate the differential shortening between adeacent members. This paper presents effect of parameters for phenomenon of column shortening in vertical members. The paper presents effect of parameters for phenomenon of column shortening in vertical members. The conclusions obtained from this study are follow as ; Strength of concrete and steel ratio effected on column shortening caused by elastic and inelastic shortening. Also, it is known that Ultimate-shrinkage-Value, Specific-Creep-Value, and volume to surface ratio effected on inelastic shortening only. Particularly, Ultimate-Shrinkage-Value and Specific-Creep-Value effected considerable on the amount of total column shortening.

A Structural Engineer's Approach to Differential Vertical Shortening in Tall Buildings

  • Matar, Sami S.;Faschan, William J.
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • Vertical shortening in tall buildings would be of little concern if all vertical elements shortened evenly. However, vertical elements such as walls and columns may shorten different amounts due to different service axial stress levels. With height, the differential shortening may become significant and impact the strength design and serviceability of the building. Sometimes column transfers or other vertical structural irregularities may cause differential shortening. If differential shortening is not addressed properly, it can impact the serviceability of the building. This paper takes the perspective of a structural engineer in planning the design, predicting the shortening and its effects, and communicating the information to the contractor.

A Column Shortening on High-Rise Building and Structural Effect under seismic load (초고층 건물의 기둥축소와 지진하중에 대한 구조적 영향)

  • 정은호;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.3
    • /
    • pp.59-68
    • /
    • 1997
  • The necessity of a high-rise building in big cities gave a new problem to structural engineers. The shortening effect of vertical members needs special considerstion in the desigh and construction of high-rise buildings. The shortening of each column transfers load to nonstructural members such as partitions, cladding, and M/E systems which are not designed to carry gravity loads. Also, the slabs and beams will tilt due to the cumulative differential shortening of adjacent vertical members. The main purpose of estimating the total shortening of vertical structural members is to compensate the differential shortening between adjacent members. This paper presents the structural effect of differential shortening between in main structural members. Lateral earthquake load is applied to the 52 story concrete structure which has an initial vertical displacement due to the gravity load. Shortening amount for each vertical member was estimated using the computerized column shortening software. Comparison of stresses between the shortening corrected structure and the uncorrecated structure due to earthquake load was discussed.

  • PDF

Field Measurement and Compensation Method of Column Shortening for SRC Columns in 37-story Residential Building (37층 초고층주상복합건물 SRC기둥의 기둥축소량 현장계측 및 보정법)

  • Song, Hwa-Cheol;Do,e Guen-Young;Cho, Hun-hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.145-152
    • /
    • 2005
  • Long-term axial shortening of the vertical elements of tail buildings results in differential movements between two elements and may lead to the additional moments of connection beam and slab elements, and other secondary effects, such as cracks of partitions or curtain walls. Accurate prediction of time-dependent column shortening is essential for tall buildings from both strength and serviceability aspects. The compensation method is different from reinforced concrete and SRC(Steel Reinforced Concrete) members. The SRC columns are usually compensated according to total differential shortening between two vertical elements. In this study, column shortenings of 37-story W building under construction are predicted and compensated. The SRC column shortenings are compared with the actual column shortening by field measurement and the column shortenings are reanalysed and recompensated.

Analysis of Material Tests for Predicting and Correcting the Shortening of Vertical Members (수직부재 축소량 예측 및 보정을 위한 재료시험 분석)

  • Park, Hee-Gon;Kwon, Hae-Won;Lee, Jin-Woo;Bae, Yeoun-Ki;Youn, Kang-Sup;Lee, Jae-Sam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.173-174
    • /
    • 2009
  • With the recent emergence of high rise buildings, this study was conducted in order to examine shortening, which has been used only in civil engineering structures, in such buildings. Examination of the shortening of vertical members is basically focused on deformations caused by load applied to concrete, material characteristics, etc. Shortening is analyzed through calculating parameters from the factors or characteristics of concrete, but analysis in the aspect of material tests has been somewhat unsatisfactory. Thus, this study purposed to analyze basic material test items for correcting the shortening of vertical members, namely, columns, to determine the reliability of material tests before parameter calculation for correcting shortening, and to examine the performance of material tests.

  • PDF

An Evaluation for Vertical Structural Members Compensated during Design Process and These Compensated during Construction of High-rise Building under Seismic Load (설계 및 시공과정에 보정된 고층건물 구조재의 지진하중에 의한 영향 평가)

  • 정은호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.93-102
    • /
    • 1999
  • Increased height of buildings causes severe shortening of vertical structural members due to the accumulated axial load. It not only decreases the serviceability of a structure but also affects significantly the stability of a structure itself due to the secondary stress. The main purpose of estimating the shortening of vertical structural members is to compensate the differential shortening of adjacent members. This paper presents the comparison of stresses between the vertical structural members compensated during construction process and these compensated during design process under the seismic load and represents that the precise compensation of vertical structural members is important.

  • PDF

Analysis on Long Term Behavior in 120-Story High-Rise Buildings according to Lateral-Load-Resisting Systems (120층 규모 초고층 건물에 대한 횡력저항시스템 적용에 따른 장기거동 분석)

  • Kim, Gyeong-Chan;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.119-129
    • /
    • 2022
  • It is essential to control the lateral displacement and differential axial shortening of the vertical elements in high-rise buildings. The differential axial shortening can cause challenges in the serviceability and safety of non-structural and structural elements, respectively. Hence, in this study, the differential axial shortening of the vertical elements and effects of long term behaviors of concrete are analyzed in 120-story high-rise buildings via the construction sequence analysis. Consequently, the axial shortening of the vertical elements is classified into elastic, creep, and shrinkage shortening, and dominant factors to the maximum axial shortening are analyzed. In addition, the serviceability of the non -structural elements is checked with a differential axial shortening at 30 years after completion of construction, and member forces at design and construction stages in girders and outrigger walls are compared.

Prediction and Measurement of Differential Column Shortening in High-rise Building Structures (고층건물의 부등축소량 예측 및 계측)

  • 정금진;양근혁;이정한;홍재원;이원호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.511-516
    • /
    • 2000
  • A Hybrid Wall System(HWS) building, Kolon Bundang Tripolis was instrumented to measure the vertical deformation of core-walls and columns. The vertical shortening of individual members were measured at selected floor levels such as 1F, 12F, 25F, and 34F. The measurement has been taken during one year after the construction was started. Together with the measurement, concrete property tests were performed in the laboratory using the concrete obtained in the field. The measured vertical shortenings were compared with the calculated prediction values and the satisfactory agreement was obtained.

  • PDF

A Study on the Effect of Construction Time in the Column Shortening in High-Rise Building (초고층 구조물에서 기둥축소에 대한 시공기간의 영향에 관한 연구)

  • 정은호;김희철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.267-274
    • /
    • 1996
  • Differential shortening of vertical members in high-rise buildings affect other structural members that have to be considered such as horizontal members and exterior cladding. of many elements which affect the total amount of shortening, different loading history mainly comes from the different construction time. Shortening of 66 story concrete columns were investigated and compared according to the different construction time, little difference was found between the total shortening of interior and that of exterior column.

  • PDF

Vertical Shortening Considerations in the 1 km Tall Jeddah Tower

  • Peronto, John;Sinn, Robert;Huizinga, Matthew
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • Jeddah Tower will be the first man-made structure to reach a kilometer in height upon its completion in 2019. From conception, it was clear that an all-concrete superstructure would present many advantages for a building of such unprecedented height and slenderness. An all-concrete structure, however, did present many challenges that needed to be addressed in the system arrangement and through comprehensive analysis and design, among them vertical shortening effects due to the time-dependent creep and shrinkage of concrete. This paper outlines and presents the engineering solutions developed by the authors regarding this complex concrete material phenomenon, while addressing the construction and regional challenges associated with realizing a concrete tower of this unprecedented scale.