• Title/Summary/Keyword: Vertical design method

Search Result 954, Processing Time 0.031 seconds

A Study of Simplified Calculation Methods for Outside Vertical Illuminance using VBA (VBA(Visual Basic for Applications)를 활용한 실외 수직면 조도 간이계산법에 관한 연구)

  • Yun, Su-In;Kim, Kang-Soo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.12
    • /
    • pp.65-72
    • /
    • 2018
  • The purpose of this study is to predict vertical illuminance accurately at the design stage of a building without the help of simulation tools. Comparing two well-known vertical illuminance prediction algorithms with measured values, it is verified that the Igawa model is more consistent with the measured values than the Perez model. Using the DIVA program, we simulated the vertical illuminance at 30-degree intervals from south to north, compared with the vertical illuminance calculated with the Igawa model. The result of calculation values were verified from 120 degrees east to 120 degrees west. The vertical illuminance values with each of three shade devices were calculated using the Igawa model, and compared with the vertical illuminance simulated by DIVA program. As a result, all the errors when installing horizontal / vertical / grid shade divices were included in the error standard specified by ASHRAE.

Thrust Profile Prediction for a Vertical Launching Missile using Similarity Law (상사법칙을 이용한 수직발사 유도탄 추력곡선예측)

  • Cho, Sung-Jin;Kim, Eul-Gon;Ahn, Jo-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • In this paper, a thrust prediction method for a developing vertical launching missile is proposed through considering a verified vertical launching missile(a baseline missile) as a model. In order to predict thrust profile of a developing vertical launching missile, both Similarity law and Pi theory are applied to the model. By comparing prediction results based on the 6-DOF program of a baseline missile with simulation results of a developing vertical launching missile, the proposed method has been indirectly verified.

Vertical Distribution of Seismic Load for Earthquake Resistnat Design of base Isolated Building Structures (면진건축물의 내진설계를 위한 지진하중 분배식 제안)

  • 이동근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.212-219
    • /
    • 1999
  • In this paper we investigated an applicability of earthquake regulations for seismic-isolated building structures which has been used currently and propose an efficient method for vertical distribution of seismic loads. The distribution of force is revised in UBC-94 as vertical distribution of force of UBC(Uniform Building Code)-91 is not sufficient safety but its distribution is inefficient expensive because of similar expression to fixed-based structures. In order to overcome this difficulties improved vertical distribution to fixed-based structures. In order to overcome this difficulties improved vertical distribution of seismic load is proposed using two degrees-of-freedom isolated structures and mode shape of fixed-based structures. Efficiency and accuracy of the proposed method are verified through analysis of an example structures with moment resisting frame and shear walls so this study approximate to dynamic analysis results in each case.

  • PDF

Branch-and-bound method for solving vertical partitioning problems in the design of the relational database (관계형 데이터 베이스 설계에서 분지한계법을 이용한 수직분할문제)

  • 윤병익;김재련
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.241-249
    • /
    • 1996
  • In this paper, a 0-1 integer programming model for solving vertical partitioning problem minimizing the number of disk accesses is formulated and a branch-and-bound method is used to solve the binary vertical partitioning problem. In relational databases, the number of disk accesses depends on the amount of data transferred from disk to main memory for processing the transactions. Vertical partitioning of the relation can often result in a decrease in the number of disk accesses, since not all attributes in a tuple are required by each transactions. The algorithm is illustrated with numerical examples and is shown to be computationally efficient. Numerical experiments reveal that the proposed method is more effective in reducing access costs than the existing algorithms.

  • PDF

Investigation of Uncertain Factors Affecting on Designing Prefabricated Vertical Drain (PVD 설계 시 고려할 불확실성 요소에 관한 연구)

  • Lee, Song;Choi, Woo-Jin;Kim, Chang-Soo
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.459-465
    • /
    • 2001
  • The Prefabricated Vertical Drain(PVD) method is most widely used technique to accelerate the consolidation process and to strengthen the weak clayey soil in situ. Uncertainty in the consolidation process via the Prefabricated Vertical Drain(PVD), and the effects of uncertainty on the design of PVDs, are investigated in this paper, Among the effect factors, the coefficient of horizontal(radial) consolidation, C$\sub$h/, is the most important and sensitivity analysis of the degree of consolidation with respect to the other effect factors are carried out. For the reliable determination of uncertain quantities, the laboratory and in-situ tests are carried out. Henceforth, probability analysis that take the uncertainty into account are executed and reliable design method is provided in practice.

  • PDF

Analytical study on cable shape and its lateral and vertical sags for earth-anchored suspension bridges with spatial cables

  • Gen-min Tian;Wen-ming Zhang;Jia-qi Chang;Zhao Liu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.255-272
    • /
    • 2023
  • Spatial cable systems can provide more transverse stiffness and torsional stiffness without sacrificing the vertical bearing capacity compared with conventional vertical cable systems, which is quite lucrative for long-span earth-anchored suspension bridges' development. Higher economy highlights the importance of refined form-finding analysis. Meanwhile, the internal connection between the lateral and vertical sags has not yet been specified. Given this, an analytic algorithm of form-finding for the earth-anchored suspension bridge with spatial cables is proposed in this paper. Through the geometric compatibility condition and mechanical equilibrium condition, the expressions for cable segment, the recurrence relationship between catenary parameters and control equations of spatial cable are established. Additionally, the nonlinear general reduced gradient method is introduced into fast and high-precision numerical analysis. Furthermore, the analytic expression of the lateral and vertical sags is deduced and discussed. This is very significant for the space design above the bridge deck and the optimization of the sag-to-span ratio in the preliminary design stage of the bridge. Finally, the proposed method is verified with the aid of two examples, one being an operational self-anchored suspension bridge (with spatial cables and a 260 m main span), and the other being an earth-anchored suspension bridge under design (with spatial cables and a 500 m main span). The necessity of an iterative calculation for hanger tensions on earth-anchored suspension bridges is confirmed. It is further concluded that the main cable and their connected hangers are in very close inclined planes.

Efficient Design of Waveguide Filters Reducing Modal Interference through Cross-Shaped Slots

  • Kahng Sungtek
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.21-25
    • /
    • 2005
  • In this paper, a new method is suggested to improve the frequency responses of dual-mode waveguide-filters that employ cross-shaped slots. In accordance with this method, regarding one cross-shaped slot between two cavities, the horizontal(vertical) mode in one cavity can be designed to influence far less the vertical(horizontal) mode in cavity. Therefore, it improves the overall performances. A 4th-order dual-mode filter is taken as an example and it validates the method.

Design of an Active Suspension Controller with Simple Vehicle Models (단순 차량 모델을 이용한 능동 현가장치 제어기 설계)

  • Yim, Seongjin;Jeong, Jinhwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.177-185
    • /
    • 2016
  • This paper presents a method to design a controller for active suspension with 1-DOF decoupled models. Three 1-DOF decoupled models describing vertical, roll and pitch motions are used to design a controller in order to generate a vertical force, roll and pitch moments, respectively. These control inputs are converted into active suspension forces with geometric relationship. To design a controller, a sliding mode control is adopted. Frequency domain analysis and simulation on vehicle simulation software, CarSim$^{(R)}$, show that the proposed method is effective for ride comfort.

Design Technique for Improving the Durability of Top Coating for Thermal Barrier of Gas Turbine (가스터빈의 열차폐용 탑코팅의 내구성 향상 설계기술)

  • Koo, Jae-Mean;Seok, Chang-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Thermal barrier coating (TBC) is used to protect the substrate and extend the operating life of the gas turbine for a power plant and an aircraft. The major cause of failure of such a coating is the spallation of coating, and it results from the thermal stress between top coating and bond coating. To improve the durability of TBC system, the dense vertical cracked (DVC) coating method to insert vertical cracks is applied to a gas turbine blade. In this study, a criterion for the design of vertical crack in the DVC coating was presented using the finite element analysis.

Design and Analysis on The Connections of RC Precast Large Panel (철근콘크리트 프리캐스트 대형판 접합부의 설계 및 해석)

  • Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.85-92
    • /
    • 2006
  • Precast large panel structures have various connection system such as the horizontal slab-to-wall connection, the vertical wall to wall connection, horizontal slab-to-slab connection, etc. Horizontal connection is connected by vertical tie bars, and vertical joint is connected loop bars and shear keys. The basic function is equalized deformations on later forces and the entire wall panel assembly acts as monolithic actions. Under lateral load some slip occurs in almost vertical connections. The shape and detail of precast connections are very important to the monolithic behavior of overall structures. The paper is a study on the design method and new elasto-plastic analysis of the connections by rigid-bodies spring model.

  • PDF