• Title/Summary/Keyword: Vertical cavity surface emitting lasers

Search Result 24, Processing Time 0.02 seconds

Modelling the Mode Behavior of Circular Vertical-Cavity Surface-Emitting Laser

  • Ho, Kwang-Chun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.4 no.2
    • /
    • pp.22-27
    • /
    • 2012
  • The design characteristics of circular vertical-cavity surface-emitting lasers are studied by using a newly developed equivalent network. Optical parameters, such as the stop-band or the reflectivity of periodic mirrors and the resonance wavelength, are explored for the design of these structures. To evaluate the differential quantum efficiency and the threshold current density, a transverse resonance condition of modal transmission-line theory is also utilized. This approach dramatically reduces the computational time as well as gives an explicit insight to explore the optical characteristics of circular vertical-cavity surface-emitting lasers (VCSELs).

Design of 850 nm Vertical-Cavity Surface-Emitting Lasers by Using a Transfer Matrix Method (전달 행렬 방법을 이용한 850 nm수직 공진기 레이저 구조의 최적설계)

  • Kim Tae-Yong;Kim Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.35-46
    • /
    • 2004
  • In comparison with edge-emitting lasers(EELs), predicting the output power and slope efficiency of Vertical-Cavity Surface-Emitting Lasers(VCSELs) is very difficult due to the absorption loss in DBR layers. However, by using transfer matrix method(TMM), we've made possible to calculate such parameters of multi-layer structures like VCSELs. In this paper, we've calculated the threshold gain, threshold current and slope efficiency through the methodology based on TMM. Also TMM is the way of customizing the VCSEL structure for the desired threshold current and slope efficiency by changing the number of DBR mirror layers.

Estimating the Thickness Errors in Vertical-Cavity Surface-Emitting Laser Structures from Optical Reflection spectra (반사 스펙트럼을 이용한 VCSEL 에피층의 두께 오차 평가)

  • 김남길;김상배
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.8
    • /
    • pp.572-579
    • /
    • 2003
  • By comparing the measured optical reflection spectra with calculated one by the transfer-matrix method (TMM) in epitaxial wafers for vertical-cavity surface-emitting lasers (VCSELs), we have estimated the systematic thickness errors in a simple and nondestructive way. The experimentally confirmed technique is based on the finding that the shape of the reflection spectra depends mainly on a newly defined single parameter, the effective error in the n-mirror layers, and the thickness error in the active cavity simply shifts the Fabry-Perot resonance wavelength. Also shown is that the proposed method is reliable when the relative standard deviation of the random thickness errors is less than 0.005. Because reflection spectra are routinely measured, we can easily estimate the thickness errors nondestructively with high spatial resolution.

High Power and Single Mode Lasing Characteristics in Vertical Cavity Surface Emitting Laser by Varying Photonic Bandgap Structures (광 결정 구조 변수에 따른 고출력 단일모드 수직공진 표면발광 레이저의 발진 특성)

  • Lee, Jin-Woong;Hyun, Kyung-Sook;Shin, Hyun-Ee;Kim, Hee-Dae
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.339-345
    • /
    • 2009
  • The high power and single mode vertical cavity surface emitting laser(VCSEL)s with photonic crystal structures have been proposed and fabricated by reducing substantially the hole numbers used in the photonic crystal structures. It is found that only six holes enable VCSELs to operate a single mode and the reliability can be enhanced by filling the holes with polyimide. The single mode lasing characteristics were analyzed by varying the oxide aperture and the hole diameter in photonic crystal structures. As a result, the single mode lasing can be stably obtained in the photonic crystal vertical cavity surface emitting lasers.

Quasi-Continuous Operation of 1.55- μm Vertical-Cavity Surface-Emitting Lasers by Wafer Fusion

  • Song, Dae-Sung;Song, Hyun-Woo;Kim, Chang-Kyu;Lee, Young-Hee;Kim, Jung-Su
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.83-89
    • /
    • 2001
  • Room temperature quasi-continuous operation is achieved near 1556 nm with threshold current as low as 2.2 mA from a 5.6-${\mu}{\textrm}{m}$ oxide-aperture vertical-cavity surface-emitting laser. Wafer fusion techniques are employed to combine the GaAs/AlGaAs mirror and the InP-based InGaAs/InGaAsP active layer. In this structure, an $Al_x/O_y$/GaAs distributed bragg reflector and intra-cavity contacts are used to reduce free carrier absorption.

Tailoring the Static Characteristics of Implanted VCSELs with the Implant and Metal Aperture Radii (임플랜트 및 금속전극 반경에 따른 임플랜트 VCSEL 정특성의 변화)

  • Kim, Tae-Yong;Kim, Sang-Bae;Park, Bun-Jae;Son, Jeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.37-41
    • /
    • 2004
  • We have formulated an empirical analytic model for the static characteristics of implanted vertical-cavity surface-emitting lasers (VCSELs). Specifically, we have derived analytic formulas for the threshold current, slope efficiency, dynamic resistance, and the output power and forward voltage at the operation current of 12 ㎃ in terms of the implant and metal-aperture radii by fitting the measured results. The radii of the metal aperture and implant mask of the 850 nm VCSELs range from 4 to 12.5 ${\mu}{\textrm}{m}$ and 7 to 17.5 ${\mu}{\textrm}{m}$ respectively. The model shows the way of tailoring the VCSEL characteristics by changing the mask dimensions only.

On the Validity of the Effective Cavity Model with the Transfer Matrix Method as a Frame of Reference In VCSELs (수직 공진기 반도체 레이저에서 전달 행렬 방법과의 비교를 통한 유효 공진기 모델의 타당성 검토)

  • 김태용;김상배
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.31-36
    • /
    • 2004
  • In comparison with in-plane lasers, predicting the output power and differential quantum efficiency of Vertical-Cavity Surface-Emitting Lasers(VCSELs) is very difficult due to the distributed Bragg reflector(DBR) layers. Therefore, effective cavity model and transfer matrix method have been adapted in order to calculate the output power and differential quantum efficiency The effective cavity model is inappropriate to calculate output power and differential quantum efficiency while it is practically adequate to calculate the threshold gain and threshold current density The reason is that the effective cavity model can not take account of the absorption in GaAs stack layer right below the metal aperture. In this paper, we have compared the threshold current and differential quantum efficiency calculated by using transfer matrix method with effective cavity model and we have made a study of the validity of the effective cavity model. Finally, we have confirmed the versatility of the transfer matrix method with these studies.