• Title/Summary/Keyword: Vertical Strip

Search Result 135, Processing Time 0.02 seconds

ON HARMONIC CONVOLUTIONS INVOLVING A VERTICAL STRIP MAPPING

  • Kumar, Raj;Gupta, Sushma;Singh, Sukhjit;Dorff, Michael
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.105-123
    • /
    • 2015
  • Let $f_{\beta}=h_{\beta}+\bar{g}_{\beta}$ and $F_a=H_a+\bar{G}_a$ be harmonic mappings obtained by shearing of analytic mappings $h_{\beta}+g_{\beta}=1/(2isin{\beta})log\((1+ze^{i{\beta}})/(1+ze^{-i{\beta}})\)$, 0 < ${\beta}$ < ${\pi}$ and $H_a+G_a=z/(1-z)$, respectively. Kumar et al. [7] conjectured that if ${\omega}(z)=e^{i{\theta}}z^n({\theta}{\in}\mathbb{R},n{\in}\mathbb{N})$ and ${\omega}_a(z)=(a-z)/(1-az)$, $a{\in}(-1,1)$ are dilatations of $f_{\beta}$ and $F_a$, respectively, then $F_a\tilde{\ast}f_{\beta}{\in}S^0_H$ and is convex in the direction of the real axis, provided $a{\in}[(n-2)/(n+2),1)$. They claimed to have verified the result for n = 1, 2, 3 and 4 only. In the present paper, we settle the above conjecture, in the affirmative, for ${\beta}={\pi}/2$ and for all $n{\in}\mathbb{N}$.

Deformation Behavior of Slab by Two-Step Sizing Press in a Hot Strip Mill (열간 압연에서 2단 사이징 프레스 금형에 의한 슬래브의 변형거동 예측)

  • Lee S. H.;Kim D. H.;Byon S. M.;Park H. D.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.432-435
    • /
    • 2005
  • Extensive width reduction of slabs is an important technology to achieve continuous production between the steelmaking and hot rolling processes. Conventionally, a vertical roll process has been used to achieve extensive width reduction. However, it is impossible to avoid the defects such as dog-bone, fish tail and camber. The deformation behavior in the width sizing process is more favorable than that in conventional vertical rolling edger, i.e. the material better flows toward the center of slab. This study is carried out to investigate the deformation of slab by two-step sizing press. The FE-simulation is utilized to predict plastic deformation mode in compression by a sizing press of slabs far hot rolling. In this paper, the various causes of the asymmetrical rolling phenomena are mentioned for the purpose of understanding of rolling conditions. Analytical results of slab-deformation by sizing press are presented below in this study.

  • PDF

A Safety Evaluation of Shoulder Rumble Strips on Expressway using Discriminant Analysis (판별분석을 활용한 노면요철포장의 교통사고감소 효과분석)

  • Park, Je Jin;Seo, Im ki;Kang, Dong Yun;Lee, Jae Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • In general, the crash reduction effect of the rumble strip is reported to be about 30% in Korea, while it is about 40-60% in the United States. However, the effect is erroneously overestimated because the simple comparison was only made before and after the installation. Accordingly, this study will reassess the crash reduction effect of the rumble strip. The study will also examine the former's geometric characteristics as well as its effect on the causes of the crash. This study analyzed the crash effect while taking into consideration the changes in the horizontal and vertical alignment, including the width of pavement shoulders, using the crash data for two years before and after the installation of the rumble strip. The types of crash caused by the rumble strip were identified using the classification discriminant function. The crash effect on the rumble strip is estimated to be 28.3%, but the pure effect, with the exception of the effect by other elements, was analyzed to be 7.4%. For each expressway design element, the downhill section (2.0-3.0%), the section with less than 3,000 m and more than 10,000 m of the curve radius, and the section with less than 3.0 m of the pavement shoulder width were found to be effective in crash reduction. For each cause of crash, the rumble strip was analyzed to be effective in the reduction of crash caused by "not keeping the safe distance", "sleeping", "negligence in keeping eyes forward", and "excessive handle operation". In particular, the rumble strip was analyzed and seen to be especially effective in preventing crash caused by "not keeping a safe distance," and "sleeping". The installation of the rumble strip was found to be effective in the prevention of crash caused by "not keeping the safe distance" and "sleeping". The results of this study may thus be used in deciding the causes of crash and the installation location of the tailored rumble strip that would be suitable for the geometric characteristics of the roads. This study will also be helpful in the establishment of future traffic safety measures.

Ornithopter actuator characteristics analysis by motion capture experiment (모션캡쳐 실험을 통한 조류모방 날갯짓 비행체 구동 특성 분석)

  • Gim, Hakseong;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.173-179
    • /
    • 2017
  • This paper analyzes actuator characteristics for main wing and tail surfaces of an ornithopter by using a motion capture test. Experiments with the ornithopter are conducted indoor, and its fuselage is held on a jig to reduce interaction with vibration generated by flapping motion. The motion capture system detects the movement of markers attached on the main wing and tail wing tip. Experimental results show that the main wings tend to change its amplitude according to the flapping frequency, and the lift and thrust generation simulation is implemented by applying the experimental results and the ornithopter specification to Modified Strip Theory. Step input excitation is applied for experimental analysis of the tail wing in horizontal and vertical directions. As a result, horizontal and vertical tail wings have different characteristics in terms of overshoot, final value, damping ratio and natural frequency because they have different wing structures and linkages.

A Comparison Study on the Simplified Formulae for Ship Motion and Global Loads in Waves (선박의 거동 및 파랑하중 계산을 위한 약산식 비교 검토)

  • Choi, Mun-Gwan;Park, In-Kyu;Koo, Weoncheol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.534-540
    • /
    • 2012
  • The global performance of various ships estimated by simplified formulae of classification societies is compared with the numerical results by a strip-theory-based whipping analysis program including slamming impact(USLAM). Heave acceleration, pitch angle and the vertical acceleration are compared and the effectiveness of simplified formulae is evaluated. Four different ship models are used for comparison study, which include S175, Flokstra, 6000TEU and 8100TEU container ships. In order to verify the numerical results, the vertical bending moment of S175 is compared with the results of ITTC workshop data.

Horizontal pullout capacity of a group of two vertical plate anchors in clay

  • Bhattacharya, Paramita;Kumar, Jyant
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.299-312
    • /
    • 2013
  • The horizontal pullout capacity of a group of two vertical strip plate anchors, placed along the same vertical plane, in a fully cohesive soil has been computed by using the lower bound finite element limit analysis. The effect of spacing between the plate anchors on the magnitude of total group failure load ($P_{uT}$) has been evaluated. An increase of soil cohesion with depth has also been incorporated in the analysis. For a weightless medium, the total pullout resistance of the group becomes maximum corresponding to a certain optimum spacing between the anchor plates which has been found to vary generally between 0.5B and B; where B is the width of the anchor plate. As compared to a single plate anchor, the increase in the pullout resistance for a group of two anchors becomes greater at a higher embedment ratio. The effect of soil unit weight has also been analyzed. It is noted that the interference effect on the pullout resistance increases further with an increase in the unit weight of soil mass.

Pullout capacity of vertical plate anchors in cohesion-less soil

  • Kame, G.S.;Dewaikar, D.M.;Choudhury, Deepankar
    • Geomechanics and Engineering
    • /
    • v.4 no.2
    • /
    • pp.105-120
    • /
    • 2012
  • In this paper, the ultimate pullout capacity of a vertical plate strip anchors in cohesion-less soil is analyzed with the consideration of active and passive state of equilibrium in the soil. K$\ddot{o}$tter's equation is used to compute the active and passive thrusts (along with their point of application) which are subsequently used in the analysis in which, all the equation of equilibrium are properly interpreted. A comparison of the results with the experimental results vis-$\grave{a}$-vis available theoretical/empirical solutions shows that, the proposed analysis provides a better estimate of the pullout capacity.

Effective Reduction of Horizontal Error in Laser Scanning Information by Strip-Wise Least Squares Adjustments

  • Lee, Byoung-Kil;Yu, Ki-Yun;Pyeon, Moo-Wook
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.109-120
    • /
    • 2003
  • Though the airborne laser scanning (ALS) technique is becoming more popular in many applications, horizontal accuracy of points scanned by the ALS is not yet satisfactory when compared with the accuracy achieved for vertical positions. One of the major reasons is the drift that occurs in the inertial measurement unit (IMU) during the scanning. This paper presents an algorithm that adjusts for the error that is introduced mainly by the drift of the IMU that renders systematic differences between strips on the same area. For this, we set up an observation equation for strip-wise adjustments and completed it with tie point and control point coordinates derived from the scanned strips and information from aerial photos. To effectively capture the tie points, we developed a set of procedures that constructs a digital surface model (DSM) with breaklines and then performed feature-based matching on strips resulting in a set of reliable tie points. Solving the observation equations by the least squares method produced a set of affine transformation equations with 6 parameters that we used to transform the strips for adjusting the horizontal error. Experimental results after evaluation of the accuracy showed a root mean squared error (RMSE) of the adjusted strip points of 0.27 m, which is significant considering the RMSE before adjustment was 0.77 m.

  • PDF

Dynamic response and design of a skirted strip foundation subjected to vertical vibration

  • Alzabeebee, Saif
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.345-358
    • /
    • 2020
  • Numerous studies have repeatedly demonstrated the efficiency of using skirts to increase the bearing capacity and to reduce settlement of shallow foundations subjected to static loads. However, no efforts have been made to study the efficiency of using these skirts to reduce settlement produced by machine vibration, although machines are very sensitive to settlement and the foundations of these machines should be designed properly to ensure that the settlement produced due to machine vibration is very small. This research has been conducted to investigate the efficiency of using skirts as a technique to reduce the settlement of a strip foundation subjected to machine vibration. A two-dimensional finite element model has been developed, validated, and employed to achieve the aim of the study. The results of the analyses showed that the use of skirts reduces the settlement produced due to machine vibration. However, the percentage decrease of the settlement is remarkably influenced by the density of the soil and the frequency of vibration, where it rises as the frequency of vibration increases and declines as the soil density rises. It was also found that increasing skirt length increases the percentage decrease of the settlement. Importantly, the results obtained from the analyses have been utilized to derive new dynamic impedance values that implicitly consider the presence of skirts. Finally, novel design equations of dynamic impedance that implicitly account to the effect of the skirts have been derived and validated utilizing a new intelligent data driven method. These new equations can be used in future designs of skirted strip foundations subjected to machine vibration.

A STUDY OF SURFACE ROUGHNESS OF COMPOSITE RESIN (복합레진의 표면조도에 관한 연구)

  • Park, Ki-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.1
    • /
    • pp.108-115
    • /
    • 2000
  • This study was designed to compare the effect of polishing on surface roughness of composite resin. We used Z100(3M) composite resin and placed the composite resin in the hole (4mm thick and 4mm in diameter) of vinyl plate and polymerized it under manufacturer's instructions. Samples were divided into 5 groups by polishing methods. Group 1 was control: resin was polymerized under glass plate, Group 2: resin was polymerized without any polishing procedure, Group 3: resin was polymerized with a polishing procedure of abrasive disc, Group 4: bonding agent was applyed in thin layer and polymerized on the polished polymerized resin surface. Group 5: resin was polymerized under transparent celluloid strip. The surface roughness of each specimen was measured with Sufacoder SEF-30D (Kosaka lab. Ltd) under 0.08mm cut off, 0.05mm/s stylus speed, ${\times}40$ horizontal magnification, ${\times}5000$ vertical magnification. The results were as follows : 1. Group 1 showed the most smooth surface in this study. 2. Group 3 showed more rough surface than Group 2. Considering the surface roughness, it would be better to make the shape completely before polymerize the resin. To finish and polish after the polymerization of resin makes less smooth surface. 3. When we use the transparent celluloid strip, minimum finishing procedures are recommended. Any polishing procedure could not recover the smooth resin surface of celluloid strip. 4. Application and polymerization of the thin layer of bonding agent on the polished surface showed the minimum surface smoothing effect.

  • PDF