Browse > Article
http://dx.doi.org/10.4134/BKMS.2015.52.1.105

ON HARMONIC CONVOLUTIONS INVOLVING A VERTICAL STRIP MAPPING  

Kumar, Raj (Department of Mathematics DAV University, Sant Longowal Institute of Engineering and Technology)
Gupta, Sushma (Sant Longowal Institute of Engineering and Technology)
Singh, Sukhjit (Sant Longowal Institute of Engineering and Technology)
Dorff, Michael (Department of Mathematics Brigham Young University)
Publication Information
Bulletin of the Korean Mathematical Society / v.52, no.1, 2015 , pp. 105-123 More about this Journal
Abstract
Let $f_{\beta}=h_{\beta}+\bar{g}_{\beta}$ and $F_a=H_a+\bar{G}_a$ be harmonic mappings obtained by shearing of analytic mappings $h_{\beta}+g_{\beta}=1/(2isin{\beta})log\((1+ze^{i{\beta}})/(1+ze^{-i{\beta}})\)$, 0 < ${\beta}$ < ${\pi}$ and $H_a+G_a=z/(1-z)$, respectively. Kumar et al. [7] conjectured that if ${\omega}(z)=e^{i{\theta}}z^n({\theta}{\in}\mathbb{R},n{\in}\mathbb{N})$ and ${\omega}_a(z)=(a-z)/(1-az)$, $a{\in}(-1,1)$ are dilatations of $f_{\beta}$ and $F_a$, respectively, then $F_a\tilde{\ast}f_{\beta}{\in}S^0_H$ and is convex in the direction of the real axis, provided $a{\in}[(n-2)/(n+2),1)$. They claimed to have verified the result for n = 1, 2, 3 and 4 only. In the present paper, we settle the above conjecture, in the affirmative, for ${\beta}={\pi}/2$ and for all $n{\in}\mathbb{N}$.
Keywords
univalent harmonic mapping; vertical strip mapping; harmonic convolution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I Math. 9 (1984), 3-25.   DOI
2 M. Dorff, Harmonic univalent mappings onto asymmetric vertical strips, Computational methods and function theory 1997 (Nicosia), 171-175, Ser. Approx. Decompos., 11, World Sci. Publ., River Edge, NJ, 1999.
3 M. Dorff, Convolutions of planar harmonic convex mappings, Complex Var. Theory Appl. 45 (2001), no. 3, 263-271.   DOI
4 M. Dorff, M. Nowak, and M.Woloszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ. 57 (2012), no. 5, 489-503.   DOI
5 W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), no. 1, 1-31.   DOI   ScienceOn
6 R. Kumar, M. Dorff, S. Gupta, and S. Singh, Convolution properties of some harmonic mappings in the right half-plane, see arXiv:1206.4364.
7 R. Kumar, S. Gupta, S. Singh, and M. Dorff, An application of Cohn's rule to convolutions of univalent harmonic mappings, see arXiv:1306.5375.
8 L. Li and S. Ponnusamy, Convolutions of slanted half-plane harmonic mappings, Analysis (Munich) 33 (2013), no. 2, 159-176.   DOI
9 L. Li and S. Ponnusamy, Sections of stable harmonic convex functions, Nonlinear Analysis 2014 (2014), 11 pages; http:/dx.doi.org/10.1016/j.na.2014.06.005.   DOI   ScienceOn
10 L. Li and S. Ponnusamy, Convolutions of harmonic mappings convex in one direction, Complex Anal. Oper. Th. 2014 (2014), 17 pages (available online: DOI 10.1007/s11785-014-0394-y).   DOI   ScienceOn
11 L. Li, S. Ponnusamy, and M. Vuorinen, The minimal surfaces over the slanted halfplanes, vertical strip and singlr slit, See http://arxiv.org/pdf/1204.2890.pdf
12 Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, London Mathematical Society Monographs New Series, Vol. 26, Oxford University Press, Oxford, 2002.