• Title/Summary/Keyword: Vertical Shaft

Search Result 165, Processing Time 0.03 seconds

Effect of Oil Groove Shapes on the Characteristic of the Flow Rate at the Journal Bearing with Vertical Type (수직형 저널 베어링의 유량특성에 대한 그루브 형상의 영향)

  • Jeong, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1664-1670
    • /
    • 2015
  • As journal bearing has a sliding motion between the shaft and bearing with lubricating oil, it produces a hydrodynamic lubrication condition. Journal bearing can receive a large force because it takes a distributed load at the large friction face. As the oil groove or oil hole is made in the journal bearing surface for the journal bearing smoothly working under a hydrodynamic lubrication condition, sufficient lubricating oil is supplied through the clearance of journal bearing. The performance of the journal bearing is changed according to the shapes, sizes and positions of an oil groove. In this paper, the flow rate according to the oil groove shapes (triangle, semicircle and rectangle) among the various oil supply conditions was measured. The shape that discharges the highest flow rate was observed and the groove shape of optimal performance for the journal bearing was determined. The results showed that the flow rate increases with decreasing operating temperature, the influence of temperature on the flow rate decreased with increasing rotational speed, and flow rate in the triangular groove shape was greater than in other shapes.

Integrated Environment Impact Assessment of Brick Kiln using Environmental Performance Scores

  • Pokhrel, Rajib;Lee, Heekwan
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.15-24
    • /
    • 2014
  • The capital city of Himalayan Country Nepal, Kathmandu Valley is surrounded by consecutive high mountains, which limits the air distribution and mixing effects significantly. It in turn generates steady air flow pattern over a year except in monsoon season. The air shed in the Valley is easily trapped by the surrounded mountains and the inversion layer formulated as the cap. The $PM_{10}$ concentration was noticeably higher than the standard level (120 ${\mu}g/m^3$) in urban and suburban area of Kathmandu valley for all seasons except monsoon period. The Valley area experiences similar wind patterns (W, WWS, and S) for a year but the Easterly wind prevails only during the monsoon period. There was low and calm wind blows during the winter season. Because of this air flow structure, the air emission from various sources is accumulated within the valley air, high level of air pollution is frequently recorded with other air polluted cities over the world. In this Valley area, brick kilns are recognized as the major air pollution source followed by vehicles. Mostly Bull Trench Kiln (BKT), Hoffman Kiln and Vertical Shaft Brick Kiln (VSBK) are in operation for brick firing in Kathmandu valley where the fuels such as crushed coal, saw dust, and natural gas are used for processing bricks in this study. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI) was used for screening and quantifying the potential impacts of air emission from firing fuels. The total Environmental Performance Score (EPS) was estimated and the EPS of coal was approximately 2.5 times higher than those of natural gas and saw dust. It is concluded that the crushed coal has more negative impact to the environment and human health than other fuel sources. Concerning the human health and environment point of view, alternative environment friendly firing fuel need to be used for brick industry in the kiln and the air pollution control devices also need to be applied for minimizing the air emissions from the kilns.

Earth Pressure Acting on the Cylindrical Retaining Wall of a Shaft in Cohesionless Soils : Study on the Application by Model Test (사질토 지반의 원형수직구에 설치된 흙막이벽에 작용하는 토압 : 적용성 연구)

  • 천병식;신영완;문경선
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.75-88
    • /
    • 2004
  • It is known that the earth pressure acting on the cylindrical retaining wall in cohesionless soils is small than that acting on the retaining wall in plane strain condition due to three dimensional arching effect. In this study, the earth pressure equation considering the earth pressure decrease by horizontal and vertical arching effects, overburden, wall friction, and failure surface slope is proposed. For the purpose of verifying the applicability of proposed equation, model test is performed with apparatuses that can control wall displacement, wall friction, and wall shape ratio. Influence of each factor on the active earth pressure acting on the cylindrical retaining wall is analyzed according to the model test in constant wall displacement condition. The comparison of calculated results with measured values shows that the proposed equations satisfactorily predict the earth pressure distribution on the cylindrical retaining wall.

Influence of Stack Effect in High-Rise Buildings on Wind Effect in Jeju (Comparative Analysis of Seoul and Jeju) (제주지역 고층건축물에서의 바람의 영향이 굴뚝효과에 미치는 영향 분석 (서울과 제주지역간의 비교 분석))

  • Lim, Chae-Hyun
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.6-12
    • /
    • 2015
  • This study used CONTAM modeling to analyzed analyze the stack effect in high-rise buildings for the terrain and weather conditions of Seoul and Jeju. The differential pressure caused by the stack effect is a function of the indoor and outdoor temperature difference and the height of the vertical shaft. Jeju is considered more stable than Seoul, because it is warmer than Seoul in winter. The differential pressure in Jeju is about 60% that of Seoul in for the same height of buildings in winter. However, Jeju is an island and the neutral plane is raised by over 56% by strong winds, although there is less differential pressure caused by the stack effect in Jeju than in Seoul. Due to the raised neutral plane, the region and magnitude of negative pressure in the lower part is larger in Jeju than in Seoul.

Torque Disturbance Analysis of Missile Hatch System by Spline Backlash (스플라인 백래시에 의한 유도탄 해치시스템의 토크 외란 분석)

  • Byun, Young Chul;Kang, E Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.89-99
    • /
    • 2014
  • This paper presents the experimental torque disturbance analysis of a missile hatch system by spline backlash. The missile hatch system uses a spline and gear train for vertical elevation of the heavy hatch. The spline used for the rotation shaft of the hatch is generally used for automotive driving parts that transmit high amounts of power. It has an angular backlash, which results in jerks. Backlash of the hatch spline influences hatch swinging. The spline backlash and hatch swing are experimentally analyzed by measuring the hatch's rotation angle and acceleration. Hatch swing is visually observable for a short period, and it is measured by measuring the rotation angle variation and hatch acceleration. The shape of fluctuation and duration time of hatch angle variation are similar to those of torque. This shows that the hatch swing due to spline backlash generates torque disturbances.

Performance Analysis of Friction Damper Considering the Change of the Vertical Force (수직력의 변화를 고려한 마찰댐퍼의 거동 분석)

  • Cho, Sung Gook;Park, Woong Ki;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.59-66
    • /
    • 2017
  • In this paper, to protect the piping in nuclear power plants and various plant facilities, we have developed a damper using the friction method and carried out a study to analyze the performance. Friction typed damper means a device for attenuating vibration by generating a frictional force to the bearing and the shaft by applying a compressive force to the MER-Spring. In order to analyze the performance of the damper, the properties of MER-Spring and friction materials were analyzed, a study on the effects of friction was carried out, and the behavior of this equation was established. And, to determine whether deformation of the material and to examine the reliability of the behavior equation established, prototypes was produced and, through a performance test and finite element analysis of a damper made of specimens, they were analyzed. As a result, it is noted that the reliability of the material was confirmed, the coefficient of friction have to be adjusted according to the velocity, cyclic loading test and finite element analysis results show exhibits excellent results. In addition, a review of the dynamic loads in the future shall be performed for the usage in more broad fields.

Characteristic study of bell-shaped anchor installed within cohesive soil

  • Das, Arya;Bera, Ashis Kumar
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.497-509
    • /
    • 2021
  • A large deformation FEM (Finite Element Method) based numerical analysis has been performed to study the behaviour of the bell-shaped anchor embedded in undrained saturated (cohesive) soil with the help of finite element based software ABAQUS. A typical model anchor with bell-diameter of 0.125 m, embedded in undrained saturated soil with varying cohesive strength (from 5 kN/m2 to 200 kN/m2) has been chosen for studying the characteristic behaviour of the bell-shaped anchor installed in cohesive soil. Breakout factors have been evaluated for each case and verified with the results of experimental model tests for three different types of soil samples. The maximum value of breakout factor was found as about 8.5 within a range of critical embedment ratio of 2.5 to 3. An explicit model has been developed to estimate the breakout factor (Fc) for uplift capacity of bell-shaped anchor within clay mass in terms of H/D ratio (embedment ratio). It was also found that, the ultimate uplift capacity of the anchor increases with the increase of the value of cohesive strength of the soil and H/D ratio. The empirical equation developed in the present investigation is usable within the range of cohesion value and H/D ratio from 5 kN/m2 to 200 kN /m2 and 0.5 to 3.0 respectively. The proposed model has been validated against data obtained from a series of model tests carried out in the present investigation. From the stress-profile analysis of the soil mass surrounding the anchor, occurrence of stress concentration is found to be generated at the joint of anchor shaft and bell. It was also found that the vertical and horizontal stresses surrounding the anchor diminish at about a distance of 0.3 m and 0.15 m respectively.

Computational intelligence models for predicting the frictional resistance of driven pile foundations in cold regions

  • Shiguan Chen;Huimei Zhang;Kseniya I. Zykova;Hamed Gholizadeh Touchaei;Chao Yuan;Hossein Moayedi;Binh Nguyen Le
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.217-232
    • /
    • 2023
  • Numerous studies have been performed on the behavior of pile foundations in cold regions. This study first attempted to employ artificial neural networks (ANN) to predict pile-bearing capacity focusing on pile data recorded primarily on cold regions. As the ANN technique has disadvantages such as finding global minima or slower convergence rates, this study in the second phase deals with the development of an ANN-based predictive model improved with an Elephant herding optimizer (EHO), Dragonfly Algorithm (DA), Genetic Algorithm (GA), and Evolution Strategy (ES) methods for predicting the piles' bearing capacity. The network inputs included the pile geometrical features, pile area (m2), pile length (m), internal friction angle along the pile body and pile tip (Ø°), and effective vertical stress. The MLP model pile's output was the ultimate bearing capacity. A sensitivity analysis was performed to determine the optimum parameters to select the best predictive model. A trial-and-error technique was also used to find the optimum network architecture and the number of hidden nodes. According to the results, there is a good consistency between the pile-bearing DA-MLP-predicted capacities and the measured bearing capacities. Based on the R2 and determination coefficient as 0.90364 and 0.8643 for testing and training datasets, respectively, it is suggested that the DA-MLP model can be effectively implemented with higher reliability, efficiency, and practicability to predict the bearing capacity of piles.

Assessment of Lateral Behavior of Steel-concrete Composite Piles Using Full-scale Model Tests (실대형 모형 실험을 이용한 강관합성 말뚝의 수평 거동 특성 평가)

  • Kwon, Hyungmin;Lee, Juhyung;Park, Jaehyu;Chung, Moonkyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5C
    • /
    • pp.199-206
    • /
    • 2009
  • This paper presents full scale model tests on the various types of model piles carried out to estimate the behavior of laterally loaded steel-concrete composite piles. Subgrade-reaction spring system was developed to simulate the reaction of ground in laboratory condition. In addition, lateral behavior of piles under working load condition was estimated using composite loading system, which is available for independent loading in vertical and horizontal direction. Steel-concrete composite piles showed higher efficiency in lateral resistance rather than drilled shaft made of reinforced concrete. The lateral resistance of composite pile was larger than the summation of steel pile and concrete pile due to the composite effect by steel casing. The effect of shear key or strength of concrete on the behavior of composite pile was examined. The substitution of reinforcing bar by steel casing was also investigated.

Kinematic Design of High-Efficient Rotational Triboelectric Nanogenerator (고효율 회전형 정전 나노 발전기의 기구학적 설계)

  • Jihyun Lee;Seongmin Na;Dukhyun Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.106-111
    • /
    • 2024
  • A triboelectric nanogenerator is a promising energy harvester operated by the combined mechanism of electrostatic induction and contact electrification. It has attracting attention as eco-friendly and sustainable energy generators by harvesting wasting mechanical energies. However, the power generated in the natural environment is accompanied by low frequencies, so that the output power under such input conditions is normally insufficient amount for a variety of industrial applications. In this study, we introduce a non-contact rotational triboelectric nanogenerator using pedaling and gear systems (called by P-TENG), which has a mechanism that produces high power by using rack gear and pinion gear when a large force by a pedal is given. We design the system can rotate the shaft to which the rotor is connected through the conversion of vertical motion to rotational motion between the rack gear and the pinion gear. Furthermore, the system controls the one directional rotation due to the engagement rotation of the two pinion gears and the one-way needle roller bearing. The TENG with a 2 mm gap between the rotor and the stator produces about the power of 200 ㎼ and turns on 82 LEDs under the condition of 800 rpm. We expect that P-TENG can be used in a variety of applications such as operating portable electronics or sterilizing contaminated water.