DOI QR코드

DOI QR Code

Influence of Stack Effect in High-Rise Buildings on Wind Effect in Jeju (Comparative Analysis of Seoul and Jeju)

제주지역 고층건축물에서의 바람의 영향이 굴뚝효과에 미치는 영향 분석 (서울과 제주지역간의 비교 분석)

  • Lim, Chae-Hyun (Dept. of Fire and Disaster Prevention, Jeju International University)
  • 임채현 (제주국제대학교 소방방재학과)
  • Received : 2015.07.01
  • Accepted : 2015.10.20
  • Published : 2015.12.31

Abstract

This study used CONTAM modeling to analyzed analyze the stack effect in high-rise buildings for the terrain and weather conditions of Seoul and Jeju. The differential pressure caused by the stack effect is a function of the indoor and outdoor temperature difference and the height of the vertical shaft. Jeju is considered more stable than Seoul, because it is warmer than Seoul in winter. The differential pressure in Jeju is about 60% that of Seoul in for the same height of buildings in winter. However, Jeju is an island and the neutral plane is raised by over 56% by strong winds, although there is less differential pressure caused by the stack effect in Jeju than in Seoul. Due to the raised neutral plane, the region and magnitude of negative pressure in the lower part is larger in Jeju than in Seoul.

본 연구에서는 상대적으로 바람이 강한 제주지역에서 바람의 영향이 고층건축물의 굴뚝효과에 어떠한 영향을 미치는지를 분석하기 위해 서울소재 고층건축물을 대상으로 서울과 제주지역에서의 지형 및 기상조건을 각각 대입하여 CONTAM 모델링을 실시하였다. 굴뚝효과에 의한 차압은 수직샤프트의 높이와 실내 외 온도차의 함수로서 같은 높이의 건축물에서는 겨울철 서울보다 상대적으로 외기온도가 따뜻한 제주지역에서의 차압이 서울지역의 60% 정도에 그쳐 비교적 안정적인 것으로 판단되어 왔다. 그러나 제주도는 섬지역으로서 서울보다 강한 바람의 영향에 의해 중성면이 56% 이상 큰 폭으로 상승하는 현상을 보였는데, 이는 비록 제주지역이 서울보다 굴뚝효과에 의한 차압은 적게 나타날지라도 상승된 중성면에 의해 저층부에서 형성되는 부압의 영역이나 크기는 넓고 크게 나타나 위험성이 상대적으로 높은 것으로 판단되었다.

Keywords

References

  1. C. H. Lim, B. G. Kim and Y. H. Park, "The Performance Evaluation of Natural Smoke Ventilators Due to Stack Effect and Wind Velocities in High-rise Buildings", Fire Science and Engineering, Vol. 23, No. 6, pp. 82-90 (2009).
  2. J. S. Kim and E. P. Lee, "Study on the Method of Effect Mitigation by the Elevator Shaft Pressurization at Highrise Buildings", Fire Science and Engineering, Vol. 25, No. 6, pp. 178-183 (2011).
  3. J. Y. Kim, "Numerical Analysis on Pressurization System of Smoke Control in Consideration of Stack Effect", Fire Science and Engineering, Vol. 27, No. 4, pp. 1-6 (2013). https://doi.org/10.7731/KIFSE.2013.27.4.1
  4. J. H. Jo, H. K. Shin and K. W. Kim, "Evaluation of Problems and Field Measurement of Stack Pressure Profiles in the High-rise Office Building", Journal of Architectural Institute of Korea, Vol. 26, No. 7, pp. 333-340 (2010).
  5. ASHRAE, "Principles of Smoke Management", American Society of Heating Refrigerating and Air-Conditioning Engineers, p. 69 (2002).
  6. SFPE, "The SFPE Handbook of Fire Protection Engineering, ch12 Smoke Control", Society of Fire Protection Engineers, p. 4-275 (2002).
  7. ASHRAE, "Principles of Smoke Management", American Society of Heating Refrigerating and Air-Conditioning Engineers, p. 77 (2002).
  8. ASHRAE, "Principles of Smoke Management", American Society of Heating Refrigerating and Air-Conditioning Engineers, p. 75 (2002).
  9. NIST, "CONTAM User Guide and Program Documentation", National Institute of Standards and Technology, p. 139 (2013).
  10. MOLIT, "Building Energy-saving Design Standards", Ministry of Land, Infrastructure and Transport (2014).
  11. C. H. Lim, "The Influence of Natural Smoke Ventilators on the Stack Effect and Smoke Control in High-rise Building Fires", Hoseo University PhD thesis, p. 77 (2008).
  12. NFPA, "NFPA92A, Standard for Smoke-Control Systems Utilizing Barriers and Pressure Differences", National Fire Protection Association, p. 22 (2006).