• Title/Summary/Keyword: Vertical Downward flow

Search Result 54, Processing Time 0.023 seconds

Density-surfactant-motivated removal of DNAPL trapped in dead-end fractures

  • 여인욱;이강근;지성훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.51-54
    • /
    • 2003
  • Three kinds of experiments were conducted to test existing methods and develop an effective methodology for the remediation of DNAPL trapped in vertical dead-end fractures. A water-flushing method failed to remove TCE from vertical dead-end fractures where no fluid flow occurs. A water-flushing experiment implies that existing remediation methods, utilizing water-based remedial fluid such as surfactant-enhanced method, have difficulty in removing DNAPL trapped from the vertical downward dead-end fractures, because of no water flow through dead-end fractures, capillary, and gravity forces. Fluid denser than TCE was injected into the fracture network, but did not displace TCE from the vertical dead-end fractures. Base(B on the analysis of the experiments, the increase in the density of the dense fluid and the addition of surfactant to the dense fluid were suggested, and this composite dense fluid with surfactant effectively removed TCE from the vertical dead-end fractures.

  • PDF

Effect of Flow Inlet or Outlet Direction on Air-Water Two-Phase Distribution in a Parallel Flow Heat Exchanger Header

  • Kim, Nae-Hyun;Kim, Do-Young;Cho, Jin-Pyo;Kim, Jung-Oh;Park, Tae-Kyun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.2
    • /
    • pp.37-43
    • /
    • 2008
  • The air and water flow distributions are experimentally studied for a round header - ten flat tube configuration. Three different inlet orientation modes (parallel, normal, vertical) were investigated. Tests were conducted with downward flow configuration for the mass flux from 70 to $130kg/m^2s$, quality from 0.2 to 0.6, non-dimensional protrusion depth (h/D) from 0,0 to 0.5. It is shown that, for almost all the test conditions, vertical inlet yielded the best flow distribution, followed by normal and parallel inlet. Possible explanation is provided using flow visualization results.

Helium-Air Exchange Flow with Fluids Interaction (유체간섭을 동반하는 헬륨과 공기의 치환류)

  • T.I. Kang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.4
    • /
    • pp.372-380
    • /
    • 1997
  • This paper describes experimental investigations of helium-air exchange flows through parti¬tioned opening and two-opening. Such exchange flows may occur following rupture accident of stand pipe in high temperature gas cooled reactor. A test vessel with the two types of small open¬ing on top of test cylinder is used for experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. In the case of exchange flow through the partitioned opening, flow passages of upward flow of the helium and downward flow of the air within the opening are separated by vertical partition, and the two flows interact out of entrance and exit of the opening. Therefore, an experiment of the exchange flow through two-opening is made to investigate effect of the fluids interaction of the partitioned opening sys¬tem. As a result of comparison of the exchange flow rates between the two types of the opening system, it is found that the exchange flow rate of the two-opening system is larger than that of the partitioned opening system due to absence of the effect of fluids interaction. Finally, the fluids interaction between the upward and downward flows through the partitioned opening is found to be an important factor on the helium-air exchange flow.

  • PDF

Effect of Inlet Direction on the Refrigerant Distribution in an Aluminum Flat-Tube Heat Exchanger

  • Kim, Nae-Hyun;Kim, Do-Young;Byun, Ho-Won;Choi, Yong-Min
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.130-136
    • /
    • 2008
  • The refrigerant R-134a flow distributions are experimentally studied for a round header/ten flat tube test section simulating a brazed aluminum heat exchanger. Three different inlet orientations(parallel, normal, vertical) were investigated. Tests were conducted with downward flow for the mass flux from 70 to 130 $kg/m^2s$ and quality from 0.2 to 0.6. In the test section, tubes were flush-mounted with no protrusion into the header. It is shown that normal and vertical inlet yielded approximately similar flow distribution. At high mass fluxes or high qualities, however, slightly better results were obtained for normal inlet configuration. The flow distribution was worst for the parallel inlet configuration. Possible explanation is provided based on flow visualization results.

Experimental Study on Flow Patterns and Pressure Drop Characteristics of Ice Slurry in Small Size Pipe (2) (소구경 배관내 아이스슬러리의 유동형상 및 압력강하 특성에 관한 실험적 연구(2))

  • 이동원;윤찬일;주문창
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.5
    • /
    • pp.391-397
    • /
    • 2002
  • Pressure drop were experimentally investigated for ice slurry flowing in the acrylic pipes with inner diameter of 24 mm. Ice slurry was made from 6.5% ethylene glycol-water solution, and the pipes is consisted of horizontal, vertical (upward and downward) and $90^{\circ}$ elbow pipe. The ice Packing factor (IPF) and the flow rate of the experiments were varied from 0 to 30% and from 5 to 70kg/min respectively The measured pressure drop in various pipe positions were compared with those for the solution flow (IPF=0). The pressure drop was larder than that for solution flows as the IPF increased when the flow rate was low or very high. Sharp increases in pressure drop were observed for the cases when IPF is more than 70% in horizontal and vertical pipes, whereas the pressure drop increased with the IPF simultaneously in an elbow pipe.

The Effect of Header and Channel Angle Variation on Two-Phase Flow Distribution at Multiple Junctions (헤더-채널 분기관의 각도변화가 2상 유동 분배에 미치는 영향에 대한 연구)

  • Lee, Jun Kyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.11
    • /
    • pp.559-566
    • /
    • 2015
  • The main objective of this work is to experimentally investigate the effect of angle variation on the distribution of two-phase flow at header-channel junctions. The cross-sections of the header and the channels were fixed at $16mm{\times}16mm$ and $12mm{\times}1.8mm$, respectively. Air and water were used as the test fluids. Four different header-channel positions were tested : Vertical header with Horizontal channels (case VM-HC), Horizontal header with Horizontal channels (case HM-HC), Horizontal header with Vertical Downward channels (case HM-VDC), and Horizontal header with Vertical Upward channels (case HM-VUC). In all cases, liquid flow distribution tended to decrease gradually in the upstream header region. However, in the downstream region, different trends could be seen. The reason for these different tendencies were identified by flow visualization in each case. The standard deviations for the liquid and gas flow distribution in each case were calculated, and the case of VM-HC had the lowest values compared to other cases because of the symmetrically distributed liquid film and strong flow recirculation near the end plate.

The Variation of Current by the Building of Artificial Upwelling Structure ( I ) (인공용승구조물 설치에 의한 유동변화 ( I ))

  • Kim, Dong-Sun;Hwang, Suk-Bum
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.4 s.27
    • /
    • pp.301-306
    • /
    • 2006
  • In order to estimate the characteristics of water movements around artificial upwelling structure, current measurements were carried out along lines E-W and S-N on May 4th(neap tide} and May 30th(spring tide), 2006. In the study area, southeastward flow was dominant during the field observations, and the pattern of water movement in the upper layer above 30m depth was different from that in the lower layer below 30m depth Vertical flow(w-component} around the artificial structure area and western area was shown to be upward flow, but downward flow occurred in the southern, northern and eastern parts at the neap tide. At the spring tide, the ebb current along E-W line showed upwelling flow in the eastern part and western area and showed upwelling flow near the artificial structure area and downwelling flow far away that one. At the spring tide, upward flow was dominant along S-N line during the flood current Volume transport by upward flow was higher than that by downward flow. Volume transport by upward flow during ebb of neap tide was greater than during flood current of neap tide, but was reverse at the spring tide.

  • PDF

Air-water Countercurrent Flow Limitation in Narrow Rectangular Channels (협소 사각유로에서 공기-물 대향류 유동한계)

  • Kim, Byong-Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.6
    • /
    • pp.441-446
    • /
    • 2007
  • An experimental study on the countercurrent two-phase flow in narrow rectangular channels has been peformed. Countercurrent flow limitation (CCFL) was investigated using air and water in 760mm long, 100mm wide, vertical test sections with 1 and 3mm channel gaps. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.125 and 0 to 3.5m/s ranges, respectively. As the gap width of rectangular channel increased the CCFL water superficial velocity decreased for the given air superficial velocity. Slight increase of the air superficial velocity resulted in the abrupt decrease of water velocity when $j_g=2{\sim}4m/s$. The critical superficial velocity of air, at which the downward flow of water was no longer allowed, also decreased with the increase of gap width. The experimental results were compared with the previous correlations, which were mainly for round tubes, and the qualitative trends were found to be partially acceptable. However the quantitative discrepancies were hardly neglected. New correlation of CCFL was developed and showed good agreement with the experimental data.

A study of a new interfacial instability between two vertical fluid layers of different densities (수직평판 사이를 흐르는 두 점성유체의 밀도차에 의한 계면의 새로운 불안정성 연구)

  • Lee, Cheol-U;Ju, Sang-U;Lee, Sang-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.3949-3959
    • /
    • 1996
  • A new interfacial instability between two vertical fluid layers of different densities is studied. The two layers are flowing between two parallel vertical plates vertically upward or downward, forming counter- or concurrent flows. In order to extend the study to highly-nonlinear regime in future studies, a nonlinear interface evolution equation is derived, and the stability analysis is performed based on the evolution equation. Among the parameters studies are the ratios of the fluid densities and layer thicknesses and the net flow rate.

Helium-Air Exchange Flow Through Openings with Vertical Partitions (수직평판을 삽입한 개구부의 헬륨 및 공기 치환류)

  • 강태일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.79-87
    • /
    • 2000
  • This paper describes experimental investigations of helium-air exchange flow through openings with vertical partitions. Such exchange flows may occur following rupture accident of stand pipe in high temperature gas cooled reactor. Exchange flow rates are investigated experimentally by using partitioned opening and opening with extended partition to assess fluids interference of the exchange flow at the stand pipe rupture accident. A tests vessel with the two types of opening on top of test cylinder is used in the experiments. An estimation method of mass increment is developed and applied to measure the exchange flow rate. A technique of flow visualization by Mach-Zehnder interferometer is provided to recognize the exchange flows. Amplitude and progress of interference fringes of the flows are observed and used as a support in comparison with the exchange flow rates. Flow passages of upward flow of the helium and downward flow of the air for both two types of the opening are separated by inserted partition within the opening, but in the case of partitioned opening, unseparated flow is formed at the opening entrance and the two flows interface. The exchange flow rate for the partitioned opening is not greater than that of the opening with extended partition because of the fluids interference at the entrance of opening. Finally, the fluids interference at the opening entrance is found to be one of important factors on the helium-air exchange flow rate.

  • PDF