• Title/Summary/Keyword: Vertical Coupling

Search Result 193, Processing Time 0.026 seconds

Acoustic Characteristics of Sound Field in Partially Opened Rooms -Emphasis on Vertical Coupling of Diffuse and Free Field- (실내공간의 부분적 개방에 따른 음향특성변화 II -확산음장과 자유음장의 수직적 결합을 중심으로-)

  • Jeong, Dae-Up;Choi, Young-Ji
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.5
    • /
    • pp.75-82
    • /
    • 2007
  • The present work measured and analyzed changes in the acoustics of a sound field which has a retractable ceiling. An 1/20 scale model of an openable space was built and measurement was carried out by varying the opened area of a ceiling. The most widely used room acoustic and design parameters, RT, EDT, and D50 were investigated. The results suggest that the use of RT as an acoustic design parameter may not be proper in an openable space and further it is likely to mislead the initial acoustic design of such spaces. It is mainly due to the characteristics of RT in which non-exponential decay processes are linearly fitted. Early decay times were found to be decreased in proportion to increaing the ratio of opened area. D50, an index of speech intelligibility, was effectively shows the influence of openings on the acoustics. It is also found that EDT and D50 at the seats, not directly exposed to the opened part of a ceiling, were almost linearly decreased in proportion to the ratio of opened area, while little influence was found for the opening ratio larger than 40% at the directly exposed seats to the opened part of a ceiling.

  • PDF

Development of Hydro-Mechanical Coupling Method for CO2 Sequestration and Its Application to Sleipner Project (이산화탄소 지중저장을 위한 수리-역학 연동 해석 기술 개발 및 적용 - 슬라이프너 프로젝트)

  • Kwon, Sangki;Lee, Hyeji
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.146-160
    • /
    • 2017
  • $CO_2$ sequestration for alleviating global warming is a hot issue in the world. In this study, TOUGH2 and FLAC3D were combined for analyzing the hyro-mechanical coupling behaviors expected in $CO_2$ sequestration and applied it to Sleipner project carried out in Norway. In the analysis, the influence of pore pressure on in situ stress was considered and the influence of caprock permeability on hydro-mechanical behaviors was analyzed. In the condition of constant injection rate, pressure and saturation at the injection well, liquid and gas saturation in rock, major and minor stress variations with time and distance from the injection well, and horizontal and vertical displacements after injection could be investigated. The major principal stress was quickly increased in the early stage and then slowly decreased to a stable value, which was higher than the initial value. In contrast, the minor principal stress returned to initial value after some increase in the early stage. Surface upheaval was steadily increased and it was up to 15mm in 2 years after injection. When the caprock's permeability was changed from $3e-15m^2{\sim}3e-18m^2$, it was found that the injection well pressure and surface upheaval were inversely propotional to the permeability.

Vertical Distribution and Composition of Dissolved Free Amino Acids in the Northeast Pacific Ocean (북동태평양 해역의 용존 자유아미노산 분포 및 조성 연구)

  • Son, Seung-Kyu;Park, Yong-Chul;Lee, Kyeong-Yong;Kim, Ki-Hyune;Lee, Hyo-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.289-297
    • /
    • 1999
  • Concentrations of total dissolved free amino acids (DFAAs) in the northeast Pacific Ocean $9^{\circ}54'-10^{\circ}27'N$, $131^{\circ}43'-131^{\circ}53'W$) ranged from 15.9 to 1778.2 17M, and the average was 407.2 nM. Concentrations of DFAAs in surface mixed layers, ranged from 60.1 to 1411.9 nM, and the average was 535.2 nM. Seasonal thermoclines with maxima were formed between the depth of 50 to 150 m. DFAAs in this layer were varied in concentrations from 91.7 to 1778.2 nM, and the average was 588.5 nM. DFAAs below the seasonal thermoclines fluctuated from 15.9 to 384.2 nM, and the average was 175.1 nM. Consequently, in average relatively abundant DFAAs were observed in the subsurface layer than the deeper layer. DFAA vertical profiles and compositions of station A showed similar to station Band C. Glycine, alanine, glutamic acid, serine and valine were predominant accounting for more than 60% of total amino acids. Isoleucine, tyrosine, methionine and phenylalanine comprised only few percents of total DFAAs in the study area. In mole % of amino acid, according to characteristics of functional group of amino acid, aliphatic neutral accounted for 59% and aliphatic hydroxy 16%, acidic 12%, respectively. Although differences in DFAA concentrations with depth were observed, the amino acid composition and mole % of deeper layers in all stations were similar to those of subsurface layers. The results indicate that individual DtAAs remains invariably in water columns relative to the compositions and distributions of DFAAs in the study area, which may be the result of close coupling between microbial activity and their water solubility.

  • PDF

A Multi-Polarization Reconfigurable Microstrip Antenna Using PIN Diodes (PIN 다이오드를 이용한 다중 편파 재구성 마이크로스트립 안테나)

  • Song, Taeho;Lee, Youngki;Park, Daesung;Lee, Seokgon;Kim, Hyoungjoo;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.492-501
    • /
    • 2013
  • In this paper, a multi polarization reconfigurable microstrip antenna that can be used selectively for four polarizations(vertical polarization, horizontal polarization, right hand circular polarization, left hand circular polarization) at the S-band is presented. The proposed antenna consists of four PIN diodes and a microstrip patch with a cross slot and a circular slot and is fed by utiliting electromagnetic coupling between the microstrip patch and the feed line. The proposed antenna has a DC bias network to supply DC voltage to each PIN diode and the polarization can be determined by controlling the ON /OFF states of four PIN diodes. The fabricated antenna has a VSWR below 2 in the vertical polarization(3.17~3.21 GHz), the horizontal polarization(3.16~3.20 GHz), the left hand circular polarization (3.08~3.19 GHz), and the right hand circular polarization(3.10~3.2 GHz) frequency bands. The designed antenna has the cross polarization level higher than 20 dB, a gain over 5 dBi for the linear polarization states, and 3 dB axial ratio bandwidth wider than 50 MHz in the circular polarization states.

Field-effect Transistors Based on a Van der Waals Vertical Heterostructure Using CVD-grown Graphene and MoSe2 (화학기상증착법을 통해 합성된 그래핀 및 MoSe2를 이용한 반데르발스 수직이종접합 전계효과 트랜지스터)

  • Seon Yeon Choi;Eun Bee Ko;Seong Kyun Kwon;Min Hee Kim;Seol Ah Kim;Ga Eun Lee;Min Cheol Choi;Hyun Ho Kim
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.100-104
    • /
    • 2023
  • Van der Waals heterostructures have garnered significant attention in recent research due to their excellent electronic characteristics arising from the absence of dangling bonds and the exclusive reliance on Van der Waals forces for interlayer coupling. However, most studies have been confined to fundamental research employing the Scotch tape (mechanical exfoliation) method. We fabricated Van der Waals vertical heterojunction transistors to advance this field using materials exclusively grown via chemical vapor deposition (CVD). CVDgrown graphene was patterned through photolithography to serve as electrodes, while CVD-grown MoSe2 was employed as the pickup/transfer material, resulting in the realization of Van der Waals heterojunction transistors with interlayer charge transfer effects. The electrical characteristics of the fabricated devices were thoroughly examined. Additionally, we observed variations in the transistor's performance based on the presence of defects in MoSe2 layer.

A Study on Upper Ocean Response to Typhoon Ewiniar (0603) and Its Impact (태풍 에위니아 (0603) 통과 후 상층해양 변동 특성과 영향)

  • Jeong, Yeong Yun;Moon, Il-Ju;Kim, Sung-Hun
    • Atmosphere
    • /
    • v.23 no.2
    • /
    • pp.205-220
    • /
    • 2013
  • Upper ocean response to typhoon Ewiniar (0603) and its impact on the following typhoon Bilis (0604) are investigated using observational data and numerical experiments. Data used in this study are obtained from the Ieodo Ocean Research Station (IORS), ARGO, and satellite. Numerical simulations are conducted using 3-dimensional Princeton Ocean Model. Results show that when Ewiniar passes over the western North Pacific, unique oceanic responses are found at two places, One is in East China Sea near Taiwan and another is in the vicinity of IORS. The latter are characterized by a strong sea surface cooling (SSC), $6^{\circ}C$ and $11^{\circ}C$ in simulation and observation, under the condition of typhoon with a fast translation speed (8m $s^{-1}$) and lowering intensity (970 hPa). The record-breaking strong SSC is caused by the Yellow Sea Bottom Cold Water, which produces a strong vertical temperature gradient within a shallow depth of Yellow Sea. The former are also characterized by a strong SSC, $7.5^{\circ}C$ in simulation, with a additional cooling of $4.5^{\circ}C$ after a storm's passage mainly due to enhanced and maintained upwelling process by the resonance coupling of storm translation speed and the gravest mode internal wave phase speed. The numerical simulation reveals that the Ewiniar produced a unfavorable upper-ocean thermal condition, which eventually inhibited the intensification of the following typhoon Bilis. Statistics show that 9% of the typhoons in western North Pacific are influenced by cold wakes produced by a proceeding typhoon. These overall results demonstrate that upper ocean response to a typhoon even after the passage is also important factor to be considered for an accurate intensity prediction of a following typhoon with similar track.

Stochastic analysis for uncertain deformation of foundations in permafrost regions

  • Wang, Tao;Zhou, Guoqing;Wang, Jianzhou;Zhao, Xiaodong;Yin, Leijian
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.589-600
    • /
    • 2018
  • For foundations in permafrost regions, the displacement characteristics are uncertain because of the randomness of temperature characteristics and mechanical parameters, which make the structural system have an unexpected deviation and unpredictability. It will affect the safety of design and construction. In this paper, we consider the randomness of temperature characteristics and mechanical parameters. A stochastic analysis model for the uncertain displacement characteristic of foundations is presented, and the stochastic coupling program is compiled by Matrix Laboratory (MATLAB) software. The stochastic displacement fields of an embankment in a permafrost region are obtained and analyzed by Neumann stochastic finite element method (NSFEM). The results provide a new way to predict the deformation characteristics of foundations in permafrost regions, and it shows that the stochastic temperature has a different influence on the stochastic lateral displacement and vertical displacement. Construction disturbance and climate warming lead to three different stages for the mean settlement of characteristic points. For the stochastic settlement characteristic, the standard deviation increases with time, which imply that the results of conventional deterministic analysis may be far from the true value. These results can improve our understanding of the stochastic deformation fields of embankments and provide a theoretical basis for engineering reliability analysis and design in permafrost regions.

Vibration and Stability Analysis of a Multi-stepped Shaft System of Turbo Compressor (터보 압축기 다단 회전축계의 진동 및 안정성 연구)

  • Seo, Jung-Seok;Kang, Sung-Hwan;Park, Sang-Yoon;An, Chang-Gi;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.583-591
    • /
    • 2014
  • The mathematical modeling on the free vibration and stability of a multi-stepped shaft of turbo compressor is performed in this study. The multi-stepped shaft is modeled as a non-uniform Timoshenko beam supported by anisotropic bearings. It is assumed that the shaft is spinning with constant speed about its longitudinal axis and subjected to a conservative axial force induced by front and rear impellers attached to the shaft. The structural model incorporates non-classical features such as transverse shear and rotary inertia. A structural coupling between vertical and lateral motions is induced by Coriolis acceleration terms. The governing equations are derived via Hamilton's variational principle and the equations are transformed to the standard form of an eigenvalue problem. The implications of combined gyroscopic effect, conservative axial force, bearing stiffness and damping are revealed and a number of pertinent conclusions are outlined. In this study analytical results are compared with those from ANSYS finite element analysis and experimental modal testing.

Numerical Approach for Determination of Shut-in Pressure in Hydrofracturing Test (수압파쇄 균열폐쇄압력 산정을 위한 수치해석 연구)

  • Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.128-137
    • /
    • 2011
  • The shut-in pressure calculated in common hydrofracturing test for vertical borehole equals generally to the minimum horizontal principal stress, so it should be considered as an essential parameter for determining the in-situ stress regime around the rock mass. It shows usually an ambiguous value in pressure-time history curves, however, because of the relationship between the behavior of hydraulic fractures and the condition of remote stress regime. In this study, a series of numerical analyses have been carried out to compare several methods for determining the shut-in pressure during hydrofracturing. The hydraulic-mechanical coupling has been applied to numerical analysis for simulating the fracture propagation by hydraulic pressure, and the different discontinuity geometry has been considered in numerical models to examine the effect of numerical element shape on fracture propagation pattern. From the numerical simulations with the four different discontinuity geometries, it was revealed that the shut-in pressure obtained from graphical methods rather than statistical method was relatively small. Consequently a care should be taken in selecting a method for determining the shut-in pressure when a stress anomaly around borehole and a fracture propagation with complicate mechanism are considered.

Analysis of Dynamic Behavior of Flexible Rectangular Liquid Containers by the Coupled Boundary Element-Finite Element Method (경계요소-유한요소 연계법에 의한 구형 수조구조물의 동적거동 특성해석)

  • Koh, Hyun Moo;Park, Jang Ho;Kim, Jaekwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1033-1042
    • /
    • 1994
  • Dynamic behavior of flexible rectangular liquid containers is analyzed by a two-dimensional coupled boundary element-finite element method. The irrotational motion of inviscid and incompressible ideal fluid is modeled by boundary elements and the motion of structure by finite elements. A singularity free integral formulation is employed for the implementation of boundary element method. Coupling is performed by using compatibility and equilibrium conditions along the interface between the fluid and structure. The fluid-structure interaction effects are reflected into the coupled equation of motion as added fluid mass matrix and sloshing stiffness matrix. By solving the eigen-problem for the coupled equation of motion, natural frequencies and mode shapes of coupled system are obtained. The free surface sloshing motion and hydrodynamic pressure developed in a flexible rectangular container due to horizontal and vertical ground motions are computed in time domain.

  • PDF