DOI QR코드

DOI QR Code

Development of Hydro-Mechanical Coupling Method for CO2 Sequestration and Its Application to Sleipner Project

이산화탄소 지중저장을 위한 수리-역학 연동 해석 기술 개발 및 적용 - 슬라이프너 프로젝트

  • Received : 2017.05.22
  • Accepted : 2017.06.16
  • Published : 2017.06.30

Abstract

$CO_2$ sequestration for alleviating global warming is a hot issue in the world. In this study, TOUGH2 and FLAC3D were combined for analyzing the hyro-mechanical coupling behaviors expected in $CO_2$ sequestration and applied it to Sleipner project carried out in Norway. In the analysis, the influence of pore pressure on in situ stress was considered and the influence of caprock permeability on hydro-mechanical behaviors was analyzed. In the condition of constant injection rate, pressure and saturation at the injection well, liquid and gas saturation in rock, major and minor stress variations with time and distance from the injection well, and horizontal and vertical displacements after injection could be investigated. The major principal stress was quickly increased in the early stage and then slowly decreased to a stable value, which was higher than the initial value. In contrast, the minor principal stress returned to initial value after some increase in the early stage. Surface upheaval was steadily increased and it was up to 15mm in 2 years after injection. When the caprock's permeability was changed from $3e-15m^2{\sim}3e-18m^2$, it was found that the injection well pressure and surface upheaval were inversely propotional to the permeability.

세계 각국에서는 지구온난화 완화를 위한 이산화탄소 지중저장에 대한 관심이 높다. 본 연구에서는 이산화탄소 지중저장에 따른 수리-역학적 복합거동 해석을 위해 TOUGH2 와 FLAC3D 를 결합하고 이를 노르웨이 슬라이프너 프로젝트에 적용하였다. 수리-역학 해석에서는 공극압에 의한 현지응력의 변화를 고려하였으며 주입공 상부의 덮개암의 투수계수 변화에 따른 수리-역학적 영향을 분석하였다. 일정 속도로 이산화탄소를 주입하는 경우, 주입정에에서의 압력 및 포화도 변화, 암반에서의 포화도 변화, 시간과 위치에 따른 암반에서의 최대주응력 및 최소주응력의 변화, 주입 후 수직변위 및 수평변위의 변화를 파악할 수 있었다. 최대주응력은 주입초기에 빠르게 상승한 후 서서히 낮아지다가 초기 응력보다 높은 값으로 수렴하는 경향을 보였으며 최소주응력은 초기에 빠르게 증가하다가 초기값으로 복귀하는 경향을 보였다. 주입이 진행됨에 따라 지표에서는 융기가 점진적으로 발생하며 주입 후 2년이 경과한 시점에서 최대 15 mm 의 수직변위가 발생하였다. 덮개암의 투수계수를 $3e-15m^2{\sim}3e-18m^2$ 까지 변화시키면서 해석을 실시한 결과, 주입초기에는 투수계수에 반비례하여 주입공 압력과 지표면 융기가 증가하였다.

Keywords

References

  1. 권상기, 이창수, 박승훈, 2015, Decovalex-2015 Task B2를 위한 THM 해석기법 개발 및 적용, 터널과 지하공간, Vol. 25, No. 6, pp. 556-567.
  2. 권이균, 2016, 이산화탄소 지중저장 사업의 추진현황 검토 및 한국의 추진방향 제안, KEPCO journal on electric power and energy, Vol. 2, pp. 167-185. https://doi.org/10.18770/KEPCO.2016.02.02.167
  3. 김형목, 박의섭, 신중호, 박용찬, 2008, 온실가스(CO2) 지중저장과 암반공학적 기술요소, 터널과 지하공간, 18권, 3호, pp. 175-184.
  4. 김현우, 천대성, 최병희, 최헌수, 박의섭, 2013, CO2 지중저장 시 단층 안정성 평가, 터널과 지하공간, 23권, 1호, pp. 13-30.
  5. 박상도, 2009, 이산화탄소 포집 및 저장기술, 물리학과 첨단기술, 2009년 6월호.
  6. 윤태섭, 정연종, 강동훈, 2016, 이산화탄소 지중저장 연구개발 현황, The magazine of the Korean Society of Civil Engineers, 64권, 1호.
  7. 환경부, 2016, 교토의정서 이후 신 기수체계 파리협정 길라잡이.
  8. Addis, M. A., 1997, The stress-depletion response of reservoirs, SPE annual technical conference and exhibition, SPE38720, San Antonio, Texas, 5-8 October.
  9. Alnes, H., Eiken, O., Nooner, S., Sasagawa, G., Stenvold, T., Zumberge,M.,2011, Results from Sleipner gravity monitoring:updated density and temperature distribution of the CO2 plume, Energy Procedia, Vol. 4, pp. 5504-5511. https://doi.org/10.1016/j.egypro.2011.02.536
  10. Altmann, J.B., et al., 2010, Poroelastic effects in reservoir stress path, Int.J.of Rock Mechanics & Mining Sciences, Vol. 47, pp. 110-1113.
  11. Altman, J. B., 2010, Poroelastic effects in reservoir modelling, Ph.D.Thesis.
  12. Carroll, K. C., Nguyen, B. N., Fang, Y., Richmond, M. C., Murray, C. J., 2011, Coupling of STOMP and ABAQUS for Hydro-Geomechanical Modeling of Fluid Flow and Rock Deformation Associated with Subsurface CO2 Injection, American Geophysical Union, Fall Meeting 2011, abstract #H51G-1271.
  13. Engelder, T. and Fisher, M. P., 1994, Influence of poroelastic behavior on the magnitude of minimum horizontal stress, Sh, in overpressured parts of sedimentary basin, Geology, Vol. 22, pp.949-952. https://doi.org/10.1130/0091-7613(1994)022<0949:IOPBOT>2.3.CO;2
  14. Herwanger, J. and Horne, S. 2005, Linking geomechanics and seismics:Stress effects on time-lapse multi-component seismic data, 67th Annual international meeting, EAGE, Expanded Abstracts.
  15. IPCC, 2001, Climate Change 2001: the Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change.
  16. Johnson, J. W., Nitao, J. J., Steefel, C. I., Knauss, K. G., 2001, Reactive transport modeling of geologic CO2 sequestration in saline aquifers: the influence of intra-aquifer shales and the relative effectiveness of structural, solubility, and mineral trapping during prograde and retrograde sequestration, Lawrence Livermore National Laboratory report, UCRL-JC-146932.
  17. Loschetter, F. Smai, S. Sy, A. Burnol, A. Leynet, S. Lafortune and A. Thoraval, 2012, Simulatino of CO2 storage in coal seams: Coupling of TOUGH2 with the solver for mechanics CODE-ASTER(R), Proceedings, TOUGU symposium 2012.
  18. Pruss, K., 2011, ECO2M:A TOUGH2 fluid property module for mixtures of water, NaCl, and CO2, including super-and sub-critical conditions, and phase change between liquid and gaseous CO2, Contact No:LBNL-4590E, LBNL, Berkeley, CA.
  19. Pruss,K.,Oldenburg,C., Moridis,G.,1999, TOUGH2 user's guide, version 2.0, Earth science division, LBNL, Univ. of California.
  20. Rutqvist J., Vasco, D. W., Myer, L., 2010, Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah Algeria, Int.J.of Greenhouse Gas Control, Vol. 4, pp. 225-30. https://doi.org/10.1016/j.ijggc.2009.10.017
  21. Sayers, C. M., 2006, Sensitivity of time-lapse seismic to reservoir stress path, Geophysical prospecting, Vol. 54, pp. 369-380. https://doi.org/10.1111/j.1365-2478.2006.00539.x
  22. Sen, V. and Settari, A. T., 2005, Couple geomechanical and flow modeling of compacting reservoirs, The leading edge, Vol. 24, pp. 1284-1286. https://doi.org/10.1190/1.2149657
  23. Torp, T. A., Gale, J., 2004, Demonstrating storagte of CO2 in geological reservoirs: The Sleipner and SACS projects, Energy, Vol. 29, pp. 1361-1369. https://doi.org/10.1016/j.energy.2004.03.104
  24. Vasco, D. W., Ferretti, A., Novali, F, 2008, Reservoir monitoring and characterization using satellite geodetic data:Interferometric systhetic aperture radar observations from the Krechba field, Algeria, Geophisics Vol. 73, WA113-122. https://doi.org/10.1190/1.2981184