• 제목/요약/키워드: Versatility

검색결과 396건 처리시간 0.022초

건축공간에서 '투명성'의 디자인 효과에 관한 연구 (A Study on the Design Effect to 'Transparency' in Architectural Space)

  • 윤도근;김소희
    • 한국실내디자인학회논문집
    • /
    • 제25호
    • /
    • pp.155-161
    • /
    • 2000
  • 'Transparency', which has been an important topic of architectural discourse in the recent past, is playing an even greater role in architectural expression nowadays. The purpose of this study is to define the prevailing conceptions about transparency and to discover the various modes of this design effect in architectural space. By using partial or complete of transparency in a structure, designers are able to express themselves more profoundly. The perception between exterior and interior, transformation of day into night and conditions arising from spatial overlapping create an atmosphere which deepens the quickly of architectural design. Transparency can present as void what in reality is solid. Following the period of de-construction, transparency has asserts itself in late part of the century and transparency can be considered synonymous with modernistic and refers to structure that are optically luminant or pleasant in its simplicity. Along with advancement of climate control, construction and design technologies and new material with versatility should combine to even further the diversity of transparency in architectural expression.

  • PDF

건축 환경의 투명성 효과와 경량적 표현 (Transparency Effects and Visual Lightness of Architectural Space Environment)

  • 김선영
    • 한국실내디자인학회논문집
    • /
    • 제13권2호
    • /
    • pp.46-55
    • /
    • 2004
  • While transparency in general refers to the structure that is optically luminant or pleasant in its lightness, it is often synonymous with the concept of "modernistic." The advancement in construction and design technologies and the development of new materials with versatility adds even further diversity to transparency in architectural expression. The purpose of this study is to analyze various conceptions about transparency effects by comparing diverse expressions of visual lightness effects in space design. For this, I categorize and exemplify visual lightness effects of space applied to transparent materials. I argue that by utilizing transparent materials, the perception of space as well as boundaries between exterior and interior can be profoundly transformed. Space that overlaps through transparent boundaries creates atmosphere which deepens the architectural space environments.ironments.

상용코드 통합을 통한 미소기전집적시스템의 설계 소프트웨어 개발:DS/MEMS (Development of Design Software for MEMS integrating Commercial Codes: DS/MEMS)

  • 허재성;이상훈;곽병만
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.180-187
    • /
    • 2003
  • A CAD-based seamless design system for MEMS named DS/MEMS was developed which performs coupled-field analysis, optimal and robust design. DS/MEMS has been developed by means of integrating commercial codes and inhouse code-SolidWorks, FEMAP, ANSYS and CA/MEMS. This strategy results in versatility that means to include various analysis model, corresponding analyses and approximated design sensitivity analysis and user friendliness that design variables are taken to be selectable directly from a CAD model, that the problem is formulated under a window environment and that the manual job during optimization process is almost eliminated. DS/MEMS works on a parametric CAD platform, integrating CAD modeling, analysis, and optimization. Nonlinear programming algorithms, the Taguchi method, and response surface method are made available for optimization. One application problem is taken to illustrate the proposed methodology and show the feasibility of DS/MEMS as a practical tool.

Efficient Monte Carlo simulation procedures in structural uncertainty and reliability analysis - recent advances

  • Schueller, G.I.
    • Structural Engineering and Mechanics
    • /
    • 제32권1호
    • /
    • pp.1-20
    • /
    • 2009
  • The present contribution addresses uncertainty quantification and uncertainty propagation in structural mechanics using stochastic analysis. Presently available procedures to describe uncertainties in load and resistance within a suitable mathematical framework are shortly addressed. Monte Carlo methods are proposed for studying the variability in the structural properties and for their propagation to the response. The general applicability and versatility of Monte Carlo Simulation is demonstrated in the context with computational models that have been developed for deterministic structural analysis. After discussing Direct Monte Carlo Simulation for the assessment of the response variability, some recently developed advanced Monte Carlo methods applied for reliability assessment are described, such as Importance Sampling for linear uncertain structures subjected to Gaussian loading, Line Sampling in linear dynamics and Subset simulation. The numerical example demonstrates the applicability of Line Sampling to general linear uncertain FE systems under Gaussian distributed excitation.

Modelling seismically repaired and retrofitted reinforced concrete shear walls

  • Cortes-Puentes, W. Leonardo;Palermo, Dan
    • Computers and Concrete
    • /
    • 제8권5호
    • /
    • pp.541-561
    • /
    • 2011
  • The Finite Element Method (FEM) was employed to demonstrate that accurate simulations of seismically repaired and retrofitted reinforced concrete shear walls can be achieved provided a good analysis program with comprehensive models for material and structural behaviour is used. Furthermore, the analysis tool should have the capability to retain residual damage experienced by the original structure and carry it forward in the repaired and retrofitted structure. The focus herein is to provide quick, simple, but reliable modelling procedures for repair and retrofitting strategies such as concrete replacement, addition of diagonal reinforcing bars, bolting of external steel plates, and bonding of external steel plates and fibre reinforced polymer sheets, thus illustrating versatility in the modelling. Slender, squat, and slender-squat shear walls were investigated. The modelling utilized simple rectangular membrane elements for the concrete, truss bar elements for the steel and FRP retrofitting materials, and bond-link elements for the bonding interface between steel or FRP to concrete. The analyses satisfactorily simulated seismic behaviour, including lateral load capacity, displacement capacity, energy dissipation, hysteretic response, and failure mode.

Genetic algorithm optimization of precast hollow core slabs

  • Sgambi, Luca;Gkoumas, Konstantinos;Bontempi, Franco
    • Computers and Concrete
    • /
    • 제13권3호
    • /
    • pp.389-409
    • /
    • 2014
  • Precast hollow core slabs (HCS) are technically advanced products in the precast concrete industry, widely used in the last years due to their versatility, their multipurpose potential and their low cost. Using three dimensional FEM (Finite Element Method) elements, this study focuses on the stresses induced by the prestressing of steel. In particular the investigation of the spalling crack formation that takes place during prestressing is carried out, since it is important to assure the appropriate necessary margins concerning such stresses. In fact, spalling cracks may spread rapidly towards the web, leading to the detachment of the lower part of the slab. A parametric study takes place, capable of evaluating the influence of the tendon position and of the web width on the spalling stress. Consequently, after an extensive literature review on the topic of soft computing, an optimization of the HCS is performed by means of Genetic Algorithms coupled with 3-D FEM models.

A 3D co-rotational beam element for steel and RC framed structures

  • Long, Xu;Tan, Kang Hai;Lee, Chi King
    • Structural Engineering and Mechanics
    • /
    • 제48권5호
    • /
    • pp.587-613
    • /
    • 2013
  • A 3-node 3D co-rotational beam element using vectorial rotational variables is employed to consider the geometric nonlinearity in 3D space. To account for shape versatility and reinforced concrete cross-sections, fibre model has been derived and conducted. Numerical integration over the cross-section is performed, considering both normal and shear stresses. In addition, the derivations associated with material nonlinearity are given in terms of elasto-plastic incremental stress-strain relationship for both steel and concrete. Steel reinforcement is treated as elasto-plastic material with Von Mises yield criterion. Compressive concrete behaviour is described by Modified Kent and Park model, while tensile stiffening effect is taken into account as well. Through several numerical examples, it is shown that the proposed 3D co-rotational beam element with fibre model can be used to simulate steel and reinforced concrete framed structures with satisfactory accuracy and efficiency.

Two-scale approaches for fracture in fluid-saturated porous media

  • de Borst, Rene;Rethore, Julien;Abellan, Marie-Angele
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.83-101
    • /
    • 2008
  • A derivation is given of two-scale models that are able to describe deformation and flow in a fluid-saturated and progressively fracturing porous medium. From the micromechanics of the flow in the cavity, identities are derived that couple the local momentum and the mass balances to the governing equations for a fluid-saturated porous medium, which are assumed to hold on the macroscopic scale. By exploiting the partition-of-unity property of the finite element shape functions, the position and direction of the fractures are independent from the underlying discretization. The finite element equations are derived for this two-scale approach and integrated over time. The resulting discrete equations are nonlinear due to the cohesive crack model and the nonlinearity of the coupling terms. A consistent linearization is given for use within a Newton-Raphson iterative procedure. Finally, examples are given to show the versatility and the efficiency of the approach.

The Parameter Learning Method for Similar Image Rating Using Pulse Coupled Neural Network

  • Matsushima, Hiroki;Kurokawa, Hiroaki
    • Journal of Multimedia Information System
    • /
    • 제3권4호
    • /
    • pp.155-160
    • /
    • 2016
  • The Pulse Coupled Neural Network (PCNN) is a kind of neural network models that consists of spiking neurons and local connections. The PCNN was originally proposed as a model that can reproduce the synchronous phenomena of the neurons in the cat visual cortex. Recently, the PCNN has been applied to the various image processing applications, e.g., image segmentation, edge detection, pattern recognition, and so on. The method for the image matching using the PCNN had been proposed as one of the valuable applications of the PCNN. In this method, the Genetic Algorithm is applied to the PCNN parameter learning for the image matching. In this study, we propose the method of the similar image rating using the PCNN. In our method, the Genetic Algorithm based method is applied to the parameter learning of the PCNN. We show the performance of our method by simulations. From the simulation results, we evaluate the efficiency and the general versatility of our parameter learning method.

A comparative study of numerical methods for fluid structure interaction analysis in long-span bridge design

  • Morgenthal, Guido;McRobie, Allan
    • Wind and Structures
    • /
    • 제5권2_3_4호
    • /
    • pp.101-114
    • /
    • 2002
  • Both a Finite Volume and a Discrete Vortex technique to solve the unsteady Navier-Stokes equations have been employed to study the air flow around long-span bridge decks. The implementation and calibration of both methods is described alongside a quasi-3D extension added to the DVM solver. Applications to the wind engineering of bridge decks include flow simulations at different angles of attack, calculation of aerodynamic derivatives and fluid-structure interaction analyses. These are being presented and their specific features described. If a numerical method shall be employed in a practical design environment, it is judged not only by its accuracy but also by factors like versatility, computational cost and ease of use. Conclusions are drawn from the analyses to address the question of whether computer simulations can be practical design tools for the wind engineering of bridge decks.