• Title/Summary/Keyword: Vero cell model

Search Result 11, Processing Time 0.028 seconds

Evaluation of phlorofucofuroeckol-A isolated from Ecklonia cava (Phaeophyta) on anti-lipid peroxidation in vitro and in vivo

  • Lee, Ji-Hyeok;Ko, Ju-Young;Oh, Jae-Young;Kim, Eun-A;Kim, Chul-Young;Jeon, You-Jin
    • ALGAE
    • /
    • v.30 no.4
    • /
    • pp.313-323
    • /
    • 2015
  • Lipid peroxidation means the oxidative degradation of lipids. The process from the cell membrane lipids in an organism is generated by free radicals, and result in cell damage. Phlorotannins, well-known marine brown algal polyphenols, have been utilized in functional food supplements as well as in medicine supplements to serve a variety of purposes. In this study, we assessed the potential anti-lipid peroxidation activity of phlorofucofuroeckol-A (PFF-A), one of the phlorotannins, isolated from Ecklonia cava by centrifugal partition chromatography in 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH)-stimulated Vero cells and zebrafish system. PFF-A showed the strongest scavenging activity against alkyl radicals of all other reactive oxygen species (ROS) and exhibited a strong protective effect against ROS and a significantly strong inhibited of malondialdehyde in AAPH-stimulated Vero cells. The apoptotic bodies and pro-apoptotic proteins Bax and caspase-3, which were induced by AAPH, were strongly inhibited by PFF-A in a dose-dependent manner and expression of Bcl-xL, an anti-apoptotic protein, was induced. In the AAPH-stimulated zebrafish model, additionally PFF-A significantly inhibited ROS and cell death, as well as exhibited a strong protective effect against lipid peroxidation. Therefore, these results suggest that PFF-A has excellent protective effects against ROS and lipid peroxidation induced by AAPH in both an in vitro Vero cell model and an in vivo zebrafish model.

Differential Signaling and Virus Production in Calu-3 Cells and Vero Cells upon SARS-CoV-2 Infection

  • Park, Byoung Kwon;Kim, Dongbum;Park, Sangkyu;Maharjan, Sony;Kim, Jinsoo;Choi, Jun-Kyu;Akauliya, Madhav;Lee, Younghee;Kwon, Hyung-Joo
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.273-281
    • /
    • 2021
  • Severe acute respiratory syndrome CoV-2 (SARS-CoV-2) is responsible for the current coronavirus disease 2019 (COVID-19) pandemic. Signaling pathways that are essential for virus production have potential as therapeutic targets against COVID-19. In this study, we investigated cellular responses in two cell lines, Vero and Calu-3, upon SARS-CoV-2 infection and evaluated the effects of pathway-specific inhibitors on virus production. SARS-CoV-2 infection induced dephosphorylation of STAT1 and STAT3, high virus production, and apoptosis in Vero cells. However, in Calu-3 cells, SARS-CoV-2 infection induced long-lasting phosphorylation of STAT1 and STAT3, low virus production, and no prominent apoptosis. Inhibitors that target STAT3 phosphorylation and dimerization reduced SARS-CoV-2 production in Calu-3 cells, but not in Vero cells. These results suggest a necessity to evaluate cellular consequences upon SARS-CoV-2 infection using various model cell lines to find out more appropriate cells recapitulating relevant responses to SARS-CoV-2 infection in vitro.

A Study on Recovery from Potentially Lethal Damage Induced by $\gamma-Irradiation$ in Plateau-phase Vero Cells in vitro (평형기의 Vero세포계에서 방사선($\gamma$-선) 조사 후 발생한 잠재치사 손상의 회복에 관한 연구)

  • Kim, Il-Han;Choi, Eun-Kyung;Ha, Sung-Whan;Park, Charn-Il;Cha, Chang-Yong
    • Radiation Oncology Journal
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 1988
  • Recovery from potentially lethal damage (PLDR) after irradiation was studied in plateau-phase culture of Vero cells in vitro. Unfed plateau-phase cells were irradiated with dose of 1 to 9Gy using Cs-137 irradiator. Cells then were incubated again and left in situ for 0, 1, 2, 3, 4, 5, 6, and 24 hours and then were trypsinized explanted, and subcultured in fresh RPMI-1640 media containing $0.33\%$ agar. Cell survival was measured by colony forming ability. An adequate number of heavily irradiated Vero cells were added as feeder cells to make the total cell number constant in every culture dish. As the postirradiation in situ incubation time increased, surviving fraction increased by PLDR. The rate of PLDR was so rapid that increased surviving fraction reached saturation level at 2 to 4 hours after in situ incubation. As the radiation dose increased, the rate of PLDR fastened and the magnitude of increased surviving fraction at saturation level by PLOR also increased. In analysis of cell survival curve fitted to the linear-quadratic model, the linear inactivation coefficient $(\alpha)$ decreased largely and reached nearly to zero but the quadratic inactivation coefficient $(\beta)$ increased minimally by increment of postirradiation in situ incubation time. So PLDR mainly affected the damage expressed as $\alpha$, In the multitarget model, significant change was not obtained in $D_0\;but\;in D_q$. Therefore, shoulder region in cell survival curve was mainly affected by PLDR and terminal slope was not influenced at all. And dose-modifying factor by PLDR was relatively higher in shoulder region, that is, in low dose area below 3 Gy.

  • PDF

Protective Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde from Polysiphonia morrowii Harvey against Hydrogen Peroxide-Induced Oxidative Stress In Vitro and In Vivo

  • Cho, Su-Hyeon;Heo, Soo-Jin;Yang, Hye-Won;Ko, Eun-Yi;Jung, Myeong Seon;Cha, Seon-Heui;Ahn, Ginnae;Jeon, You-Jin;Kim, Kil-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1193-1203
    • /
    • 2019
  • We investigated the protective effects of 3-bromo-4,5-dihydroxybenzaldehyde (BDB) from Polysiphonia morrowii Harvey against hydrogen peroxide ($H_2O_2$)-induced apoptosis in Vero cells. BDB exhibited scavenging activity for DPPH, hydroxyl, and alkyl radicals. BDB also inhibited $H_2O_2$-induced lipid peroxidation, cell death, and apoptosis in Vero cells by inhibiting the production of ROS. To evaluate the molecular mechanisms of apoptosis inhibition, the expression of Bax/Bcl-xL and $NF-{\kappa}B$ was assessed by western blot assay. BDB significantly suppressed the cleavage of caspase-9 and PARP and reduced Bax levels in $H_2O_2$-induced Vero cells. Besides, BDB suppressed the phosphorylation of $NF-{\kappa}$B and the translocation of p65 in $H_2O_2$-induced cells. Furthermore, we evaluated the effect of BDB on ROS production, cell death, and lipid peroxidation in an $H_2O_2$-stimulated zebrafish embryo model. Taken together, these results indicated that ROS generation and cell death were significantly inhibited by BDB in zebrafish embryos, thereby proving that BDB exerts excellent antioxidant activity in vitro and in vivo.

Developmental competence and Effects of Coculture after Crypreservation of Blastomere-Biopsied Mouse Embryos as a Preclinical Model for Preimplantation Genetic Diagnosis (착상 전 유전진단 기술 개발의 동물실험 모델로서 할구 생검된 생쥐 배아에서 동결보존 융해 후 배아 발생 양상과 공배양 효과에 관한 연구)

  • Kim, Seok-Hyun;Kim, Hee-Sun;Ryu, Buom-Yong;Choi, Sung-Mi;Pang, Myung-Geol;Oh, Sun-Kyung;Jee, Byung-Chul;Suh, Chang-Suk;Choi, Young-Min;Kim, Jung-Gu;Moon, Shin-Yong;Lee, Jin-Yong;Chae, Hee-Dong;Kim, Chung-Hoon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.27 no.1
    • /
    • pp.47-57
    • /
    • 2000
  • Objective: The effects of cryopreservation with or without coculture on the in vitro development of blastomere-biopsied 8-cell mouse embryos were investigated. This experimental study was originally designed for the setup of a preclinical mouse model for the preimplantation genetic diagnosis (PGD) in human. Methods: Eight-cell embryos were obtained after in vitro fertilization (IVF) from F1 hybrid mice (C57BL(표현불가)/CBA(표현불가)). Using micromanipulation, one to four blastomeres were aspirated through a hole made in the zona pellucida by zona drilling (ZD) with acid Tyrode's solution (ATS). A slow-freezing and rapid-thawing protocol with 1.5M dimethyl sulfoxide (DMSO) and 0.1M sucrose as cryoprotectant was used for the cryopreservation of blastomere- biopsied 8-cell mouse embryos. After thawing, embryos were cultured for 110 hours in Ham's F-10 supplemented with 0.4% bovine serum albumin (BSA). In the coculture group, embryos were cultured for 110 hours on the monolayer of Vero cells in the same medium. The blastocyst formation was recorded, and the embryos developed beyond blastocyst stage were stained with 10% Giemsa to count the total number of nuclei in each embryo. Results: The survival rate of embryos after cryopreservation was significantly lower in the blastomere-biopsied (7/8, 6/8, 5/8, and 4/8 embryos) groups than in the non-biopsied, zona intact (ZI) group. Without the coculture, the blastocyst formation rate of embryos after cryopreservation was not significantly different among ZI, the zona drilling only (ZD), and the balstomere-biopsied groups, but it was significantly lower than in the non-cryopreserved control group. The mean number of cells in embryos beyond blastocyst stage was significantly higher in the control group ($50.2{\pm}14.0$) than in 6/8 ($26.5{\pm}6.2$), 5/8 ($25.0{\pm}5.5$), and 4/8 ($17.8{\pm}7.8$) groups. With the coculture using Vero cells, the blastocyst formation rate of embryos after cryopreservation was significantly lower in 5/8 and 4/8 groups, compared with the control, 7/8, and 6/8 groups. The mean number of cells in embryos beyond blastocyst stage was also significantly lower in 4/8 group ($25.9{\pm}10.2$), compared with the control ($50.2{\pm}14.0$), 7/8 ($56.0{\pm}22.2$), and 6/8 ($55.3{\pm}25.5$) groups. Conclusion: After cryopreservation, blastomere-biopsied mouse embryos have a significantly impaired developmental competence in vitro, but this detrimental effect might be prevented by the coculture with Vero cells in 8-cell mouse embryos biopsied one or two blastomeres. Biopsy of mouse embryos after ZD with ATS is a safe and highly efficient preclinical model for PGD of human embryos.

  • PDF

Effects of Coculture on Development of Biopsied Mouse Embryos as a Preclinical Model for Preimplantation Genetic Diagnosis of Human Embryos (생쥐 모델을 이용한 배아의 할구 생검법과 할구가 생검된 배아의 배양시 공배양 효과에 관한 연구: 인간에서의 착상 전 유전진단 기술 개발을 위한 동물실험 모델의 개발)

  • Kim, S.H.;Ryu, B.Y.;Jee, B.C.;Choi, S.M.;Kim, H.S.;Pang, M.G.;Oh, S.K.;Suh, C.S.;Choi, Y.M.;Kim, J.G.;Moon, S.Y.;Lee, J.Y.;Chae, H.D.;Kim, C.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.1
    • /
    • pp.9-20
    • /
    • 1999
  • The genetic defects in human gametes and embryos can cause adverse effects on overall reproductive events. Biopsy of embryos for preimplantation genetic diagnosis (PGD) offers a new possibility of having children free of the genetic disease. In addition, advanced embryo culture method may enhance the effectiveness of embryo biopsy for the practical application of PGD. This experimental study was undertaken to evaluate the effects of coculture on the development in vitro of biopsied mouse embryos as a preclinical model for PGD of human embryos. Embryos were obtained after in vitro fertilization (IVF) from F1 hybrid mice (C57BLfemale/CBAmale). Using micromanipulation, 1, 2, 3 or 4 blastomeres of 8-cell stage embryos were aspirated through a hole made in the zona pellucida by zona drilling (ZD) with acidic Tyrode's solution (ATS). After biopsy of blastomeres, embryos were cultured in vitro for 110 hours in Ham's F-10 supplemented with 0.4% BSA or cocultured on the monolayer of Vero cells in the same medium. The frequence of blastocyst formation were recorded, and the embryos beyond blastocyst stage were stained with 10% Giemsa to count the total number of nuclei in each embryo. There was no significant difference in the blastocyst formation between the zona intact control group and the zona drilling (ZD) only, or biopsied groups. The hatching rate of all the treatment groups except 4/8 group was significantly higher than that of control group. In all the treatment groups, there was a significant reduction in the mean cell number of embryos beyond blastocyst stage ($50.2{\pm}14.0$ in control group vs. $41.2{\pm}7.9$ in ZD, $39.3{\pm}8.8$ in 7/8, $29.7{\pm}6.4$ in 6/8, $25.1{\pm}5.7$ in 5/8, and $22.1{\pm}4.3$ in 4/8 groups, p<0.05). When the same treatments were followed by coculture with Vero cells, a similar pattern was seen in the blastocyst formation and the hatching rate. However, in all the treatment groups, there was a significant increase in the mean cell number of embryos beyond blastocyst stage with coculture, compared with the parallel groups without coculture. In the cleavage rate of biopsied blastomeres cultured for 110 hours after IVF, there was no significant difference between coculture and non-coculture groups (87.2% vs. 78.7%). However, the mean cell number of embryos developed from the biopsied blastomeres was significantly higher in coculture group ($11.5{\pm}4.7\;vs.\;5.9{\pm}1.9$, p<0.05). In conclusion, biopsy of mouse embryos after ZD with ATS is a safe and highly efficient method for PGD, and coculture with Vero cells showed a positive effect on the development in vitro of biopsied mouse embryos and blastomeres as a preclinical model for PGD of human embryos.

  • PDF

Immunoelectron Microscopic Localization and Analysis of Herpes simplex Virus Type 1 Antigens

  • Chung, Charles C.;Lee, Hyung-Hoan;Cho, Myung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.5
    • /
    • pp.714-720
    • /
    • 2000
  • Antigens of Herpes simplex virus type 1 (HSV-1) strain F were immunoblotted to identify the most immunodominant one, and the localization of this antigen was then studied using immunoelectron microscopy. The 67.8 kDa antigen appeared to be the most immunodominant one in a mouse model, and it showed randomly scattered and partially clustered distribution on the surface of the virion. The localization study was performed using immunogold with polyclonal anti-HSV-1 sera produced from BALB/c mice, and immunofluorescence demonstrated that the viral products in the HSV-2 infected Vero cells were distributed throughout the infected host cell, however, mainly on the surface of the host membrane.

  • PDF

Experimental Models for SARS-CoV-2 Infection

  • Kim, Taewoo;Lee, Jeong Seok;Ju, Young Seok
    • Molecules and Cells
    • /
    • v.44 no.6
    • /
    • pp.377-383
    • /
    • 2021
  • Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a novel virus that causes coronavirus disease 2019 (COVID-19). To understand the identity, functional characteristics and therapeutic targets of the virus and the diseases, appropriate infection models that recapitulate the in vivo pathophysiology of the viral infection are necessary. This article reviews the various infection models, including Vero cells, human cell lines, organoids, and animal models, and discusses their advantages and disadvantages. This knowledge will be helpful for establishing an efficient system for defense against emerging infectious diseases.

Protective effects of extracts from six local strains of Pyropia yezoensis against oxidative damage in vitro and in zebrafish model

  • Dai, Yu-Lin;Kim, Gwang Hoon;Kang, Min-Cheol;Jeon, You-Jin
    • ALGAE
    • /
    • v.35 no.2
    • /
    • pp.189-200
    • /
    • 2020
  • Pyropia yezoensis has been used as functional food in East Asia, especially in Korea and Japan, for more than five hundred years. This study aims to evaluate the antioxidant effect of polyphenols and proteins-rich extracts from P. yezoensis (PPPs) against 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative cell damage. Among six Korean local strains obtained from Jinhae (JiH), Haenam (HN), Jangheung (JaH), Jindo (JD), Wando (WD), and Sinan (SA) areas, the extracts of P. yezoensis from SA and JD are relatively higher in polyphenols and proteins contents. SA showed the lowest IC50 scavenging activities against 1,1-diphenyl-2-picryl-hydrazyl and alkyl radicals and displayed protective effects against reactive oxygen species (ROS) in AAPH-induced Vero cells. Especially, the PPPs extracts from SA and JD showed protective activities against AAPH-induced apoptosis, as observed by nuclear staining with Hoechst 33342. Furthermore, in vivo studies of the SA extract in zebrafish showed significantly reduced ROS generation, lipid peroxidation, and cell damage. This is the first study, to our knowledge, to evaluate the antioxidant bioactivity of PPP in the Korean Peninsula using a zebrafish model. Due to SA and JD both located in the west coast of Korea, we deduced that the chemical content of the different PPP extracts was mildly influenced by their geographic location, and this alga has potential of protective activity against AAPH-induced ROS both in vitro and in vivo.

Passage and Adaptation of Maaji Virus in Hamster (Maaji Virus의 Hamster 계대 및 적응)

  • Kim, Yun-Cheol;Paik, Woo-Hyun;Lee, Pyung-Woo
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.67-76
    • /
    • 1996
  • The methods that make Hantavirus grow consist of inoculation into the experimental animals and cultured cells. The cultured cells, such as Vero-E6 and A549 cells, have been usually used for isolation of the virus and the animals, such as mice and rats, are used for large scale preparation of the virus so far. Furthermore, the cell can be used to maintain the virus and assay the infectivity and the animals can be used for the experiment of viral pathogenicity and challenge for assessment of vaccine. Apodemus mice, the own natural host of the virus, has been used for challenge test of Hantaan virus. However it has been pointed out to difficult handling and breeding the animal in laboratory. Therefore, we attempted to establish a new animal model for challenge test at the time of isolation of Maaji virus which is a new hantavirus similar but distinct to Hantaan virus. In suckling hamster, the titer of Maaji virus and the lethality to mice of the virus were increased gradually in the titer and lethality through passage by intracerebral (IC) inoculation. We tried to re-adapt this brain virus to lung of weanling hamster. The brain passaged virus was inoculated into weanling hamster intramuscularly. Again, the titer of the virus in lung was also increased by continuous passage of this virus. This facts could regarded as adaptation to new environment in which the virus proliferates. To identity the virus passaged in hamster with Maaji virus, both of the virus passaged in hamster brain and lung were compared with Maaji virus (MAA-I) and Hantaan virus (HTN 76-118) by means of restriction fragment length polymorphism (RFLP) and slingle strand conformation polymophism (SSCP). As a result, we conclude that Maaji virus could be adapted successfully to weanling hamster through this passage strategy. Utilizing this adapted Maaji virus strain, hamster model is able to be used for challenge test in hantaviral vaccinology and further experiments utilizing hamster system as a rather available and convenient lab animal are expected.

  • PDF