• Title/Summary/Keyword: Vermicompost

Search Result 26, Processing Time 0.026 seconds

A study on recycling of food waste using poultry and earthworms (가금류와 지렁이를 이용한 음식물 쓰레기 재활용 방법에 관한 연구)

  • Lee, Byung-Do;Bae, Yoon-Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 2004
  • This study was on a recyling system of food waste using poultry and earthworms. Food waste was fed to the egg-raising hens(Gallus gallus) or ducks(Anas platyrynchos). And the excrement of poultry after ingestion of food waste was mixed with other organic waste such as paper mill sludge or night soil sludge, aged and then provided to the earthworms(Eisenia andrei). An egg-raising hen and a duck ate up 0.40kg and 0.79kg of food waste per day, respectively. And the percental rate of exctretion(the amount of excrement/the amount of food waste eaten up) of an egg-raising hen and a duck was 71.0% and 53.7%, respectively. The excrement of poultry that had been mixed with paper mill sludge and aged was vermicomposted more easily than the excrement that had been mixed with night soil sludge and aged. The excrement of poultry aged for more than 21 days was more suitable to vermicompost than the excrement of poultry aged for less than 21 days. Even though, the earthworm lost its biomass on the mixed feeds regardless of their aging periods, which was supposed to be caused by high salinity in poulty's excrements.

  • PDF

Emergence Rate and Growth Characteristics of Ginseng Affected by Different Types of Organic Matters in Greenhouse of Direct-Sowing Culture (비닐하우스에서 인삼 직파재배 시 유기물 처리에 따른 연차간 입모율 및 생육특성)

  • Park, Hong Woo;Mo, Hwang Sung;Jang, In Bae;Yu, Jin;Lee, Young Seob;Kim, Young Chang;Park, Kee Choon;Lee, Eung Ho;Kim, Ki Hong;Hyun, Dong Yun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.23 no.1
    • /
    • pp.27-36
    • /
    • 2015
  • Shading and soil environment are the main factors of growth and yield in ginseng (Panax ginseng C. A. Meyer). Ginseng yield is directly related to survival rate because of increased missing plant for their growing period. Under field conditions, diseases and pests significantly affect plant survival rate. We evaluated the seedling establishment, growth and ginsenoside of the ginseng plants, under controlled management conditions in a plastic greenhouse, when their treated with different types of organic matter. Ginseng seeds were sown at a rate of three seeds per hole, and the seeding space measured $10cm{\times}15cm$. Compared to the control, treatment of cattle manure vermicompost (CMV) was shown to increase seedling establishment and decrease ginsenoside content. Root weights of plants treated with CMV were higher than those of plants treated with other types of organic matter. In addition, seedling establishment of 2-year-old ginseng plants was decreased when it was compared to that of 1-year-old ginseng plants. Our results indicated that organic matter type and rate were associated with seedling establishment, growth characteristic and ginsenoside content in greenhouse of ginseng direct-sowing culture.

Identification of Tetrachloroethylene Sorption Behaviors in Natural Sorbents Via Sorption Models

  • Al Masud, Md Abdullah;Choi, Jiyeon;Shin, Won Sik
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.6
    • /
    • pp.47-57
    • /
    • 2022
  • A number of different methods have been used for modeling the sorption of volatile organic chlorinated compounds such as tetrachloroethylene/perchloroethylene (PCE). In this study, PCE was adsorbed in several natural sorbents, i.e., Pahokee peat, vermicompost, BionSoil®, and natural soil, in the batch experiments. Several sorption models such as linear, Freundlich, solubility-normalized Freundlich model, and Polanyi-Manes model (PMM) were used to analyze sorption isotherms. The relationship between sorption model parameters, organic carbon content (foc), and elemental C/N ratio was studied. The organic carbon normalized partition coefficient values (log Koc = 1.50-3.13) in four different sorbents were less than the logarithm of the octanol-water partition coefficient (log Kow = 3.40) of PCE due to high organic carbon contents. The log Koc decreased linearly with log foc and log C/N ratio, but increased linearly with log O/C, log H/C, and log (N+O)/C ratio. Both log KF,oc or log KF,oc decreased linearly with log foc (R2 = 0.88-0.92) and log C/N ratio (R2 = 0.57-0.76), but increased linearly with log (N+O)/C (R2 = 0.93-0.95). The log qmax,oc decreased linearly as log foc and log C/N increased, whereas it increased with log O/C, log H/C and log (N+O)/C ratios. The log qmax,oc increased linearly with (N+O)/C indicating a strong dependence of qmax,oc on the polarity index. The results showed that PCE sorption behaviors were strongly correlated with the physicochemical properties of soil organic matter (SOM).

Tissue-cultured regeneration and ecological values in major bamboo species

  • Sharma, Avinash;Manpoong, Chowlani;Gohain, Anwesha;Pandey, Himanshu;Padu, Gompi;Aku, Hage
    • Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.218-242
    • /
    • 2022
  • Background: Promising specific growth regulators are employed in the tissue cultures of various bamboo species. Specific natural hardening mixtures support the acclimatization and adaptation of bamboo under protected cultivation. Results: The growth regulators like 2, 4-Dichlorophenoxyacetic acid (2, 4-D), Naphthaleneacetic Acid (NAA), Thidiazuron (TDZ), 6-Benzylaminopurine (BAP), Kinetin, Gelrite, Benzyl Adenine (BA), Indole Butyric Acid (IBA), Coumarin, Putrescine, Gibberellic acid (GA3), Indole Acetic Acid (IAA) has been widely used for callus induction, root regeneration and imposing plant regeneration in various species of bamboo such as Bambusa spp. and Dendrocalamus spp. Different combinations of growth regulators and phytohormones have been used for regenerating some of the major bamboo species. Natural hardening materials such as cocopeat, vermicompost, perlite, cow dung, farmyard manure, compost, soil, garden soil, and humus soil have been recommended for the acclimatization and adaptation of bamboo species. Standard combinations of growth regulators and hardening mixtures have imposed tissue culture, acclimatization, and adaptation in major bamboo species. Conclusions: Bamboo contributes to soil fertility improvement and stabilization of the environment. Bamboo species are also involved in managing the biogeochemical cycle and have immense potential for carbon sequestration and human use. This paper aims to review the various growth regulators, natural mixtures, and defined media involved in regenerating major bamboo species through in vitro propagation. In addition, the ecological benefits of safeguarding the environment are also briefly discussed.

Effect of Aerated Compost Tea on the Growth Promotion of Lettuce, Soybean, and Sweet Corn in Organic Cultivation

  • Kim, Min Jeong;Shim, Chang Ki;Kim, Yong Ki;Hong, Sung Jun;Park, Jong Ho;Han, Eun Jung;Kim, Jin Ho;Kim, Suk Chul
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.259-268
    • /
    • 2015
  • This study investigated the chemical characteristics and microbial population during incubation of four kinds of aerated compost teas based on oriental medicinal herbs compost, vermicompost, rice straw compost, and mixtures of three composts (MOVR). It aimed to determine the effects of the aerated compost tea (ACT) based on MOVR on the growth promotion of red leaf lettuce, soybean and sweet corn. Findings showed that the pH level and EC of the compost tea slightly increased based on the incubation time except for rice straw compost tea. All compost teas except for oriental medicinal herbs and rice straw compost tea contained more ${NO^-}_3-N$ than ${NH^+}_4-N$. Plate counts of bacteria and fungi were significantly higher than the initial compost in ACT. Microbial communities of all ACT were predominantly bacteria. The dominant bacterial genera were analyzed as Bacillus (63.0%), Ochrobactrum (13.0%), Spingomonas (6.0%) and uncultured bacterium (4.0%) by 16S rDNA analysis. The effect of four concentrations, 0.1%, 0.2%, 0.4% and 0.8% MOVR on the growth of red leaf lettuce, soybean and sweet corn was also studied in the greenhouse. The red leaf lettuce with 0.4% MOVR had the most effective concentration on growth parameters in foliage part. However, 0.8% MOVR significantly promoted the growth of root and shoot of both soybean and sweet corn. The soybean treated with higher MOVR concentration was more effective in increasing the root nodule formation by 7.25 times than in the lower MOVR concentrations Results indicated that ACT could be used as liquid nutrient fertilizer with active microorganisms for culture of variable crops under organic farming condition.

High frequency direct plant regeneration from leaf, internode, and root segments of Eastern Cottonwood (Populus deltoides)

  • Yadav, Rakesh;Arora, Pooja;Kumar, Dharmendar;Katyal, Dinesh;Dilbaghi, Neeraj;Chaudhury, Ashok
    • Plant Biotechnology Reports
    • /
    • v.3 no.3
    • /
    • pp.175-182
    • /
    • 2009
  • Simple, reproducible, high frequency, improved plant regeneration protocol in Eastern Cottonwood (Populus deltoides) clones, WIMCO199 and L34, has been reported. Initially, aseptic cultures established from axillary buds of nodal segments from mature plus trees on MS liquid medium supplemented with $0.25mg\;1^{-1}$ KIN and $0.25mg\;1^{-1}$ IAA. Nodal and internodal segments were found to be extra-prolific over shoot apices during course of aseptic culture establishment, while $0.25mg\;1^{-1}$ KIN concentration played a stimulatory role in high frequency plant regeneration. Diverse explants, such as various leaf segments, internodes, and roots from in vitro raised cultures, were employed. Direct plant regeneration was at high frequency of 92% in internodes, 88% in leaf segments, and 43% in root segments. This led to the formation of multiple shoot clusters on established culture media with rapid proliferation rates. Many-fold enhanced shoot elongation and growth of the clusters could be achieved on liquid MS medium supplemented with borosilicate glass beads, which offer physical support for proliferating shoots leading to faster growth in comparison to semi-solid agar or direct liquid medium. SEM examination of initial cultures confirmed direct plant regeneration events without intervening calli. In vitro regenerated plants induced roots on half-strength MS medium with $0.15mg\;1^{-1}$ IAA. Rooted 5- to 6-week-old in vitro regenerated plants were transferred into a transgenic greenhouse in pots containing 1:1 mixture of vermicompost and soil at $27{\pm}2^{\circ}C$ for hardening and acclimatization. 14- to 15-week-old well-established hardened plants were transplanted to the field and grown to maturity. The mature in vitro raised poplar trees exhibited a high survival rate of 85%; 4-year-old healthy trees attained an average height of 8 m and an average trunk diameter of 25 cm and have performed well under field conditions. The regeneration protocol presented here will be very useful for undertaking genetic manipulation, providing a value addition to Eastern Cottonwood propagation in future.