DOI QR코드

DOI QR Code

Tissue-cultured regeneration and ecological values in major bamboo species

  • Sharma, Avinash (Faculty of Agricultural Sciences, Arunachal University of Studies) ;
  • Manpoong, Chowlani (Faculty of Agricultural Sciences, Arunachal University of Studies) ;
  • Gohain, Anwesha (Faculty of Science, Arunachal University of Studies) ;
  • Pandey, Himanshu (Division of Plant Physiology and Biochemistry, Indian Institute of Sugarcane Research) ;
  • Padu, Gompi (Faculty of Agricultural Sciences, Arunachal University of Studies) ;
  • Aku, Hage (Faculty of Agricultural Sciences, Arunachal University of Studies)
  • Received : 2022.06.10
  • Accepted : 2022.07.22
  • Published : 2022.09.30

Abstract

Background: Promising specific growth regulators are employed in the tissue cultures of various bamboo species. Specific natural hardening mixtures support the acclimatization and adaptation of bamboo under protected cultivation. Results: The growth regulators like 2, 4-Dichlorophenoxyacetic acid (2, 4-D), Naphthaleneacetic Acid (NAA), Thidiazuron (TDZ), 6-Benzylaminopurine (BAP), Kinetin, Gelrite, Benzyl Adenine (BA), Indole Butyric Acid (IBA), Coumarin, Putrescine, Gibberellic acid (GA3), Indole Acetic Acid (IAA) has been widely used for callus induction, root regeneration and imposing plant regeneration in various species of bamboo such as Bambusa spp. and Dendrocalamus spp. Different combinations of growth regulators and phytohormones have been used for regenerating some of the major bamboo species. Natural hardening materials such as cocopeat, vermicompost, perlite, cow dung, farmyard manure, compost, soil, garden soil, and humus soil have been recommended for the acclimatization and adaptation of bamboo species. Standard combinations of growth regulators and hardening mixtures have imposed tissue culture, acclimatization, and adaptation in major bamboo species. Conclusions: Bamboo contributes to soil fertility improvement and stabilization of the environment. Bamboo species are also involved in managing the biogeochemical cycle and have immense potential for carbon sequestration and human use. This paper aims to review the various growth regulators, natural mixtures, and defined media involved in regenerating major bamboo species through in vitro propagation. In addition, the ecological benefits of safeguarding the environment are also briefly discussed.

Keywords

Acknowledgement

The author acknowledges that the information was compiled with the help of the articles published in the referred journals.

References

  1. Abebe S, Minale AS, Teketay D, Jayaraman D, Long TT. Biomass, carbon stock and sequestration potential of Oxytenanthera abyssinica forests in Lower Beles River Basin, Northwestern Ethiopia. Carbon Balance Manag. 2021;16(1):29. https://doi.org/10.1186/s13021-021-00192-5.
  2. Abha J, Sunila D. Assessment of in-vitro culture through nodal explants of Dendrocalamus hamiltonii. Int J Agric Appl Sci. 2021;2(1):130-3. https://doi.org/10.52804/ijaas2021.2115.
  3. Abha Manohar K, Shukla G, Roy B, Chakravarty S. Effects of plant growth regulators and growing media on propagation and field establishment of Stevia rebaudiana: a medicinal plant of commerce. CABI Agric Biosci. 2022;3:4. https://doi.org/10.1186/s43170-021-00072-5.
  4. Agarwal A, Purwar JP. Altitudinal variation in carbon sequestration potential of micropropagated Dendrocalamus asper in the mid Himalayan region of India. Paper presented at: 10th World Bamboo Congress, Korea; 2015 Sep 17-22; Damyang, Korea. Red Hook: World Bamboo Organization, 2015. p. 1-7.
  5. Akwada DR, Akinlabi ET. Economic, social and environmental assessment of bamboo for infrastructure development. Paper presented at: 5th International Conference on Infrastructure Development in Africa; 2016 Jul 11; Keynote, South Africa: ICIDA, 2016. p. 1-15.
  6. Alexander MP, Rao TR. In vitro culture of bamboo embryos. Curr Sci. 1968;37(14):415.
  7. Amiri S, Mohammadi R. Establishment of an efficient in vitro propagation protocol for Sumac (Rhus coriaria L.) and confirmation of the genetic homogeneity. Sci Rep. 2021;11(1):173. https://doi.org/10.1038/s41598-020-80550-4.
  8. Amoah M, Assan F, Dadzie PK. Aboveground biomass, carbon storage and fuel values of Bambusa vulgaris, Oxynanteria abbyssinica and Bambusa vulgaris var.vitata plantations in the Bobiri forest reserve of Ghana. J Sustain For. 2020;39(2):113-36. https://doi.org/10.1080/10549811.2019.1608452.
  9. Anand M, Brar J, Sood A. In vitro propagation of an edible bamboo Bam-busa bambos and assessment of clonal fidelity through molecular markers. J Med Bioeng. 2013;2(4):257-61. https://doi.org/10.12720/jomb.2.4.257-261.
  10. Anjali K, Khuman YSC, Sokhi J. A review of the interrelations of terrestrial carbon sequestration and urban forests. AIMS Environ Sci. 2020;7(6):464-85. https://doi.org/10.3934/environsci.2020030.
  11. Arya ID, Arya S. In vitro shoot proliferation and somatic embryogenesis: means of rapid bamboo multiplication. Paper presented at: 10th World Bamboo Congress, Korea; 2015 Sep 17-22; Damyang, Korea. Red Hook: World Bamboo Organization, 2015. p. 1-6.
  12. Ashton PS. Patterns of variation among forests of tropical Asian mountains, with some explanatory hypotheses, Plant Ecol Divers. 2017;10(5-6):361-77. https://doi.org/10.1080/17550874.2018.1429028.
  13. Austin AT, Marchesini VA. Gregarious flowering and death of understorey bamboo slow litter decomposition and nitrogen turnover in a southern temperate forest in Patagonia, Argentina. Funct Ecol. 2012;26(1):265-73. https://doi.org/10.1111/j.1365-2435.2011.01910.x.
  14. Azeez MA, Orege JI. Bamboo, its chemical modification and products. In: Abdul Khalil HPS, editor. Bamboo - current and future prospects. London: IntechOpen; 2018. p. 25-48.
  15. Bagade SA, Bagade AA, Drushya PV. Dendrocalamus strictus: an important bamboo species in India. Agric Environ e-Newsl. 2021;2(12):9-13.
  16. Bakshi M, Tiwari C, Razvi S. Conservation of an important montane bamboo Thamnocalamus falconeri, Hook.f. ex Munro through axillary bud proliferation. J For Res. 2015;26:179-85. https://doi.org/10.1007/s11676-015-0022-3.
  17. Bauters M. Biogeochemical cycles in contrasting tropical forests of the Congo Basin [PhD dissertation]. Belgium: Ghent University; 2018.
  18. Benton A. Priority species of bamboo. In: Liese W, Kohl M, editors. Bamboo: the plant and its uses. Cham: Springer; 2015. p. 31-41.
  19. Bernal B, Murray LT, Pearson TRH. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag. 2018;13(1):22. https://doi.org/10.1186/s13021-018-0110-8.
  20. Bhandawat A, Singh G, Seth R, Singh P, Sharma RK. Genome-wide transcriptional profiling to elucidate key candidates involved in bud burst and rattling growth in a subtropical bamboo (Dendrocalamus hamiltonii). Front Plant Sci. 2017;7:2038. https://doi.org/10.3389/fpls.2016.02038.
  21. Bidabadi SS, Jain SM. Cellular, molecular, and physiological aspects of in vitro plant regeneration. Plants (Basel). 2020;9(6):702. https://doi.org/10.3390/plants9060702.
  22. Boomiraj K, Jude Sudhagar R, Arunasalaswamy V, Poornima R, Senthilraja K, Jagadeeswaran R. Estimation of carbon sequestration potential of trees under Tamil Nadu biodiversity conservation and greening project (TBGP) - a viable option for climate change mitigation in Tamil Nadu, India. Asian J Microbiol Biotech Environ Sci. 2021;23(2):186-91.
  23. Bootsma A. Estimating grass minimum temperatures from screen minimum values and other climatological parameters. Agric Meteorol. 1976;16(1):103-13 https://doi.org/10.1016/0002-1571(76)90071-6.
  24. Bordoloi S, Singha BL, Goswami PB, Hazarika INA. Improved clonal propagation of superior Dendrocalamus hamiltonii nees germplasm through in vitro techniques. Glob J Bio Sci Biotechnol. 2018;7(4):537-42.
  25. Bradshaw CJA. Little left to lose: deforestation and forest degradation in Australia since European colonization. J Plant Ecol. 2012;5(1):109-20. https://doi.org/10.1093/jpe/rtr038.
  26. Brar J, Anand M, Sood A. In vitro seed germination of economically important edible bamboo Dendrocalamus membranaceus Munro. Indian J Exp Biol. 2013;51(1):88-96.
  27. Bruckman VJ. Carbon in Quercus forest ecosystems management and environmental considerations [PhD dissertation]. Vienna: Vienna University of Natural Resources and Life Sciences; 2012.
  28. Calleja-Cabrera J, Boter M, Onate-Sanchez L, Pernas M. Root growth adaptation to climate change in crops. Front Plant Sci. 2020;11:544. https://doi.org/10.3389/fpls.2020.00544.
  29. Canavan S, Richardson DM, Visser V, Roux JJ, Vorontsova MS, Wilson JR. The global distribution of bamboos: assessing correlates of introduction and invasion. AoB Plants. 2016;9(1):plw078. https://doi.org/10.1093/aobpla/plw078.
  30. Castaneda-Mendoza A, Vargas-Hernandez J, Gomez-Guerrero A, Valdez-Hernandez JI, Vaquera-Huerta H. Carbon accumulation in the aboveground biomass of a Bambusa oldhamii plantation. Agrociencia. 2005;39:107-16.
  31. Chandran H, Meena M, Barupal T, Sharma K. Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol Rep (Amst). 2020;26:e00450. https://doi.org/10.1016/j.btre.2020.e00450.
  32. Chang EH, Tian G, Shiau YJ, Chen TH, Chiu CY. Influence of thorny bamboo plantations on soil microbial biomass and community structure in subtropical badland soils. Forests. 2019;10(10):854. https://doi.org/10.3390/f10100854.
  33. Chavan BL, Rasal GB. Carbon sequestration potential of young Annona reticulate and Annona squamosa from University campus of Aurangabad. Int J Phys Soc Sci. 2012;2(3):193-8.
  34. Chen C, Huang Z, Jiang P, Chen J, Wu J. Belowground phytolith-occluded carbon of monopodial bamboo in china: an overlooked carbon stock. Front Plant Sci. 2018;9:1615. https://doi.org/10.3389/fpls.2018.01615.
  35. Cheng F, Cheng Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci. 2015;6:1020. https://doi.org/10.3389/fpls.2015.01020. Erratum in: Front Plant Sci. 2016;7:1697.
  36. Choudhary AK, Kumari P, Kumari S. In vitro propagation of two commercially important bamboo species (Bambusa tulda Roxb. and Dendrocalamus stocksii Munro.). Afr J Biotechnol. 2022;21(2):83-94. https://doi.org/10.5897/AJB2021.17437.
  37. Choudhary S, Mishra S, Lakra H, Agrawal R. Utilisation and conservation of bamboo: a natural resource of Jharkhand. Biospectra. 2013;8(20):199-206.
  38. Chu MY, Liu WY. Assessing the opportunity cost of carbon stock caused by land-use changes in Taiwan. Land. 2021;10(11):1240. https://doi.org/10.3390/land10111240.
  39. Clarkson DT, Hanson JB. The mineral nutrition of higher plants. Annu Rev Plant Physiol. 1980;31(1):239-98. https://doi.org/10.1146/annurev.pp.31.060180.001323.
  40. Coulston JW, Wear DN, Vose JM. Complex forest dynamics indicate potential for slowing carbon accumulation in the southeastern United States. Sci Rep. 2015;5:8002. https://doi.org/10.1038/srep08002.
  41. Dalvi VS. Sustainability of bamboo and role of bamboo forests in carbon sequestration and climate change. Int J Creat Res Thoughts. 2018;6(2):169-73.
  42. Das M, Pal A. In vitro regeneration of Bambusa balcooa Roxb.: factors affecting changes of morphogenetic competence in the axillary buds. Plant Cell Tiss Organ Cult. 2005;81:109-12. https://doi.org/10.1007/s11240-004-3017-x.
  43. Das MC, Singar P, Nath AJ, Das AK. Flowering of Dendrocalamus hamiltonii in Northeast India during recent years. Int J Environ Biodivers. 2018;9(4):304-6.
  44. Desai P, Desai S, Patel A, Mankad M, Gajera B, Patil G, et al. Development of efficient micropropagation protocol through axillary shoot proliferation for Bambusa vulgaris 'wamin' and Bambusa bambos and assessment of clonal fidelity of the micropropagated plants through Random Amplified Polymorphic DNA markers. Agric Nat Resour. 2019;53(1):26-32. https://doi.org/10.34044/j.anres.2019.53.1.04.
  45. Devi AS, Singh KS. Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Sci Rep. 2021;11(1):837. https://doi.org/10.1038/s41598-020-80887-w.
  46. Devi WS, Sharma GJ. In vitro propagation of Arundinaria callosa Munroan edible bamboo from nodal explants of mature plants. Open Plant Sci J. 2009;3:35-9. https://doi.org/10.2174/1874294700903010035.
  47. Dhruba Bijaya GC, Bhandari J. Carbon sequestration potential and uses of Dendrocalamus srictus. In: Sim HC, editor. IUFRO World Series Vol. 27. Asia and the pacific forest products workshop green technology for climate change mitigation and adaptation. Kuala Lumpur: IUFRO; 2010. p. 62-6.
  48. do Vale PAA, de Oliveira Junior JB, da Silva Costa FH, Scherwinski-Pereira JE. Height and number of shoots on the survival and development of micropropagated bamboo plantlets during pre-acclimatization. Pesq Agropec Trop. 2019;49:e53751. https://doi.org/10.1590/1983-40632019v4953751.
  49. Dusenge ME, Duarte AG, Way DA. Plant carbon metabolism and climate change: elevated CO2 and temperature impacts on photosynthesis, photorespiration and respiration. New Phytol. 2019;221(1):32-49. https://doi.org/10.1111/nph.15283.
  50. Econation. Bamboo, Bamboo Uses and Benefits, Bamboo Sustainability. 2018. https://econation.co.nz/bamboo. Accessed 21 Feb 2022.
  51. Edrisi SA, Tripathi V, Dubey PK, Abhilash PC. Carbon sequestration and harnessing biomaterials from terrestrial plantations for mitigating climate change impacts. In: Thakur IS, Pandey A, Ngo HH, Soccol CR, Larroche C, editors. Biomass, biofuels, biochemicals climate change mitigation: sequestration of green house gases. Elsevier: Amsterdam; 2022. p. 299-313.
  52. Elbasiouny H, El-Ramady H, Elbehiry F, Rajput VD, Minkina T, Mandzhieva S. Plant nutrition under climate change and soil carbon sequestration. Sustainability. 2022;14(2):914. https://doi.org/10.3390/su14020914.
  53. Espinosa-Leal CA, Puente-Garza CA, Garcia-Lara S. In vitro plant tissue culture: means for production of biological active compounds. Planta. 2018;248(1):1-18. https://doi.org/10.1007/s00425-018-2910-1.
  54. Fan L, Zhao T, Tarin MWK, Han Y, Hu W, Rong J, et al. Effect of various mulch materials on chemical properties of soil, leaves and shoot characteristics in Dendrocalamus Latiflorus munro forests. Plants (Basel). 2021;10(11):2302. https://doi.org/10.3390/plants10112302.
  55. Ferreira E, Kalliola R, Ruokolainen K. Bamboo, climate change and forest use: a critical combination for southwestern Amazonian forests? Ambio. 2020;49(8):1353-63. https://doi.org/10.1007/s13280-019-01299-3.
  56. Gantait S, Pramanik BR, Banerjee M. Optimization of planting materials for large scale plantation of Bambusa balcooa Roxb.: influence of propagation methods. J Saudi Soc Agric Sci. 2018;17(1):79-87. https://doi.org/10.1016/j.jssas.2015.11.008.
  57. Gera M, Chauhan S. Opportunities for carbon sequestration benefits from growing trees of medicinal importance on farm lands of Haryana. Indian For. 2010;136(3):287-300.
  58. Gonbad RA, Rani Sinniah U, Aziz MA, Mohamad R. Influence of cytokinins in combination with GA3 on shoot multiplication and elongation of tea clone Iran 100 (Camellia sinensis (L.) O. Kuntze). ScientificWorldJournal. 2014;2014:943054. https://doi.org/10.1155/2014/943054.
  59. Goyal AK, Pradhan S, Basistha BC, Sen A. Micropropagation and assessment of genetic fidelity of Dendrocalamus strictus (Roxb.) nees using RAPD and ISSR markers. 3 Biotech. 2015;5(4):473-82. https://doi.org/10.1007/s13205-014-0244-7.
  60. Gray SB, Brady SM. Plant developmental responses to climate change. Dev Biol. 2016;419(1):64-77. https://doi.org/10.1016/j.ydbio.2016.07.023.
  61. Greger M, Landberg T, Vaculik M. Silicon influences soil availability and accumulation of mineral nutrients in various plant species. Plants (Basel). 2018;7(2):41. https://doi.org/10.3390/plants7020041.
  62. Gusmiaty, Restu M, Larekeng SH, Setiawan E. The optimization of in vitro micropropagation of betung bamboo (Dendrocalamus asper backer) by medium concentrations and plant growth regulators. IOP Conf Ser Earth Environ Sci. 2020;575:012024. https://doi.org/10.1088/1755-1315/575/1/012024
  63. Hameg R, Arteta TA, Landin M, Gallego PP, Barreal ME. Modeling and optimizing culture medium mineral composition for in vitro propagation of Actinidia arguta. Front Plant Sci. 2020;11:554905. https://doi.org/10.3389/fpls.2020.554905.
  64. Hariyadi BW, Purwanti S. Application of IBA PGR concentration on germination of sugarcane (Saccharum Officinarum L) cuttings. J Agric Sci Agric Eng. 2017;1:1-9.
  65. Hatfield JL, Dold C. Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci. 2019;10:103. https://doi.org/10.3389/fpls.2019.00103.
  66. Hazarika BN, Teixeira da Silva JA, Talukdar A. Effective acclimatization of in vitro cultured plants: methods, physiology and genetics. In: Teixeira da Silva JA, editor. Floriculture, ornamental and plant biotechnology. Bexhill-on-Sea: Global Science Books; 2006. p. 427-38.
  67. Hazarika BN. Acclimatization of tissue-cultured plants. Curr Sci. 2003;85(12):1704-12.
  68. Hinge G, Surampalli RY, Goyal MK. Regional carbon fluxes from land-use conversion and land-use management in Northeast India. J Hazard Toxic Radioact Waste. 2018;22(4):04018016. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000404.
  69. Hossain MF, Islam MA, Numan SM. Multipurpose uses of bamboo plants: a review. Int Res J Biol Sci. 2015;4(12):57-60.
  70. Hou G, Delang CO, Lu X, Olschewski R. Valuing carbon sequestration to finance afforestation projects in China. Forests. 2019;10(9):754. https://doi.org/10.3390/f10090754.
  71. Huang H, Wu X, Cheng X. The prediction of carbon emission information in Yangtze River economic zone by deep learning. Land. 2021;10(12):1380. https://doi.org/10.3390/land10121380.
  72. Hussain l, Qarshi IA, Nazir H, Ullah I. Plant tissue culture: current status and opportunities. In: Leva A, Rinaldi L, editors. Recent advances in plant in vitro culture. London: IntechOpen; 2012. p. 1-29.
  73. Hussain N, Abbasi SA. Efficacy of the vermicomposts of different organic wastes as "clean" fertilizers: state-of-the-art. Sustainability. 2018;10(4):1205. https://doi.org/10.3390/su10041205.
  74. Ikeuchi M, Sugimoto K, Iwase A. Plant callus: mechanisms of induction and repression. Plant Cell. 2013;25(9):3159-73. https://doi.org/10.1105/tpc.113.116053.
  75. Ingram V, Tieguhong JC. Bars to jars: bamboo value chains in Cameroon. Ambio. 2013;42(3):320-33. https://doi.org/10.1007/s13280-012-0347-5.
  76. Isagi Y, Kawahara T, Kamo K, Ito H. Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecol. 1997;130:41-52. https://doi.org/10.1023/A:1009711814070.
  77. Jeeva S, Kiruba S, Lalthruatluanga H, Prasad MNV, Rao RR. Flowering of Melocanna baccifera (Bambusaceae) in northeastern India. Curr Sci. 2009;96(9):1165-6.
  78. Ji Y, Guo X, Zhong S, Wu L. Land financialization, uncoordinated development of population urbanization and land urbanization, and economic growth: evidence from China. Land. 2020;9(12):481. https://doi.org/10.3390/land9120481.
  79. Jin L, Liu Y, Ning J, Liu L, Li X. Carbon storage of exotic slash pine plantations in subtropical China. J For Environ Sci. 2019;35(3):150-8. https://doi.org/10.7747/JFES.2019.35.3.150.
  80. Jing W, Derong D, Binghui H, Hua P, Hongyan X. A study on the biomass structure of Bambusa pervariabilis × Dendrocalamopsis oldhami shelterbelt in three Gorges Reservoir Area. J Bamboo Res. 2004;23(3):11-4.
  81. Kang F, Li X, Du H, Mao F, Zhou G, Xu Y, et al. Spatiotemporal evolution of the carbon fluxes from bamboo forests and their response to climate change based on a BEPS model in China. Remote Sens. 2022;14(2):366. https://doi.org/10.3390/rs14020366.
  82. Kaushal R, Roy T, Thapliyal S, Mandal D, Singh DV, Tomar JMS, et al. Distribution of soil carbon fractions under different bamboo species in northwest Himalayan foothills, India. Environ Monit Assess. 2022;194(3):205. https://doi.org/10.1007/s10661-022-09839-3.
  83. Kaushal R, Singh I, Thapliyal SD, Gupta AK, Mandal D, Tomar JMS, et al. Rooting behaviour and soil properties in different bamboo species of Western Himalayan Foothills, India. Sci Rep. 2020;10(1):4966. https://doi.org/10.1038/s41598-020-61418-z.
  84. Keenor SG, Rodrigues AF, Mao L, Latawiec AE, Harwood AR, Reid BJ. Capturing a soil carbon economy. R Soc Open Sci. 2021;8(4):202305. https://doi.org/10.1098/rsos.202305.
  85. Khan N, Ahmed M, Hafiz I, Abbasi N, Ejaz S, Anjum M. Optimizing the concentrations of plant growth regulators for in vitro shoot cultures, callus induction and shoot regeneration from calluses of grapes. OENO One. 2015;49(1):37-45. https://doi.org/10.20870/oeno-one.2015.49.1.95.
  86. Khan N, Bano A, Babar MDA. Impacts of plant growth promoters and plant growth regulators on rainfed agriculture. PLoS One. 2020;15(4):e0231426. https://doi.org/10.1371/journal.pone.0231426. Erratum in: PLoS One. 2020;15(5):e0232926.
  87. Khare SR, Kharate PS, Sahu RK, Jha Z. Rapid in-vitro micropropagation of Bamboo (Dendrocalamus strictus) and its genetic fidelity testing using ISSR markers. Environ Conserv J. 2021;22(3):69-77. https://doi.org/10.36953/ECJ.2021.22308.
  88. Kicinski W, Dyjak S. Transition metal impurities in carbon-based materials: pitfalls, artifacts and deleterious effects. Carbon. 2020;168:748-845. https://doi.org/10.1016/j.carbon.2020.06.004.
  89. Kim C, Baek G, Yoo BO, Jung SY, Lee KS. Regular fertilization effects on the nutrient distribution of bamboo components in a moso bamboo (Phyllostachys pubescens (Mazel) Ohwi) stand in South Korea. Forests. 2018;9(11):671. https://doi.org/10.3390/f9110671.
  90. Kothandaraman S, Dar JA, Sundarapandian S, Dayanandan S, Khan ML. Ecosystem-level carbon storage and its links to diversity, structural and environmental drivers in tropical forests of Western Ghats, India. Sci Rep. 2020;10(1):13444. https://doi.org/10.1038/s41598-020-70313-6.
  91. Kranz CN, McLaughlin RA, Johnson A, Miller G, Heitman JL. The effects of compost incorporation on soil physical properties in urban soils - a concise review. J Environ Manag. 2020;261:110209. https://doi.org/10.1016/j.jenvman.2020.110209.
  92. Krishnakumar N, Kanna SU, Parthiban KT, Shree MP. Growth performance of thorn less bamboos (Bambusa balcooa Roxb. and Bambusa vulgaris Schrader ex J. C. Wendland). Int J Curr Microbiol Appl Sci. 2017;6(4):32-9. https://doi.org/10.20546/ijcmas.2017.604.005.
  93. Krishnapillai MV, Young-Uhk S, Friday JB, Haase DL. Locally produced cocopeat growing media for container plant production. Tree Plant Notes. 2020;63(1):29-38.
  94. Kumar A, Kumar M, Pinto MC. Editorial for special issue "socio-economic impacts of carbon sequestration on livelihoods and future climate". Land. 2022a;11:51. https://doi.org/10.3390/land11010051.
  95. Kumar PS, Kumari KU, Devi MP, Choudhary VK, Sangeetha A. Bamboo shoot as a source of nutraceuticals and bioactive compounds: a review. Indian J Nat Prod Resour. 2017;8(1):32-46.
  96. Kumar PS, Shukla G, Nath AJ, Chakravarty S. Soil properties, litter dynamics and biomass carbon storage in three-bamboo species of Sub-Himalayan region of Eastern India. Water Air Soil Pollut. 2022b;233:12. https://doi.org/10.1007/s11270-021-05477-6.
  97. Kumar R, Sharma A, Yadav S. Bamboo based agroforestry models for livelihood security of Madhya Pradesh. Pharm Innov J. 2022c;11(1):1871-4.
  98. Kumar RS, Binu NK, Nishant N, Buxy S, Sinha GN. A review of bamboo based agroforestry models developed in differentparts of India, productivity and marketing aspects. Paper presented at: Proceedings of the Conference on Bamboo Productivity in Forest and Non-Forest Areas; 2014 Jan 30-31; Dehradun, India. Dehradun: Indian Council of Forestry Research and Education. Forest Research Institute, 2014. p. 45-52.
  99. Kumaraguru A, Johnson M, Saraswathi SV. Indian forest carbon stock: a review of the current situation. J Res Environ Earth Sci. 2021;7(7):62-8.
  100. Kumari Y, Bhardwaj DR. Effect of various bamboo species on soil nutrients and growth parameters in Mid hills of HP, India. Int J Chem Stud. 2017;5(4):19-24.
  101. Kumlay AM. Combination of the auxins NAA, IBA, and IAA with GA3 improves the commercial seed-tuber production of potato (Solanum tuberosum L.) under in vitro conditions. Biomed Res Int. 2014;2014:439259. https://doi.org/10.1155/2014/439259.
  102. Lahiry S. The Story of National Bamboo Mission. 2018. https://www.downtoearth.org.in/author/samar-lahiry-101321. Accessed 21 Feb 2022.
  103. Lantican NLM, Ociones FT, Tandug LM. Above ground biomass and carbon sequestration of 4 bamboo species in the Philippines. Tech J Philipp Ecosyst Natl Resour. 2017;27(1):27-38.
  104. Larekeng SH, Gusmiaty G, Nadhilla D. In-vitro shoot induction of pring tutul (Bambusa maculata) through in various plant growth regulators (PGR). IOP Conf Ser Earth Environ Sci. 2020;575:012139. https://doi.org/10.1088/1755-1315/575/1/012139.
  105. Lata H, Chandra S, Wang YH, Raman V, Khan IA. TDZ-induced high frequency plant regeneration through direct shoot organogenesis in Stevia rebaudiana Bertoni: an important medicinal plant and a natural sweetener. Am J Plant Sci. 2012;4(1):117-28. https://doi.org/10.4236/ajps.2013.41016.
  106. Lawrence D, Coe M, Walker W, Verchot L, Vandecar K. The unseen effects of deforestation: biophysical effects on climate. Front For Glob Chang. 2022;5:756115. https://doi.org/10.3389/ffgc.2022.756115.
  107. Li J, Gao C, Miao Y, Liu Z, Cui K. Development of a highly efficient callus induction and plant regeneration system for Dendrocalamus sinicus using hypocotyls as explants. Plant Cell Tiss Organ Cult. 2021;145:117-25. https://doi.org/10.1007/s11240-020-01996-y.
  108. Li Y, Han N, Li X, Du H, Mao F, Cui L, et al. Spatiotemporal estimation of bamboo forest aboveground carbon storage based on Landsat data in Zhejiang, China. Remote Sens. 2018;10(6):898. https://doi.org/10.3390/rs10060898.
  109. Liese W, Kohl M. Bamboo plant. Rockville: Science Daily; 2018. pp. 1-6.
  110. Lin S, Liu G, Guo T, Zhang L, Wang S, Ding Y. Shoot proliferation and callus regeneration from nodular buds of Drepanostachyum luodianense. J For Res. 2019;30:1997-2005. https://doi.org/10.1007/s11676-018-0772-9.
  111. Liu YH, Yen TM. Assessing aboveground carbon storage capacity in bamboo plantations with various species related to its affecting factors across Taiwan. For Ecol Manag. 2021;481:118745. https://doi.org/10.1016/j.foreco.2020.118745.
  112. Lu X, Cao L, Wang H, Peng W, Xing J, Wang S, et al. Gasification of coal and biomass as a net carbon-negative power source for environment-friendly electricity generation in China. Proc Natl Acad Sci U S A. 2019;116(17):8206-13. https://doi.org/10.1073/pnas.1812239116.
  113. Lv W, Zhou G, Chen G, Zhou Y, Ge Z, Niu Z, et al. Effects of different management practices on the increase in phytolith-occluded carbon in Moso bamboo forests. Front Plant Sci. 2020;11:591852. https://doi.org/10.3389/fpls.2020.591852.
  114. Majumdar K, Choudhary B, Datta B. Aboveground woody biomass, carbon stocks potential in selected tropical forest patches of Tripura, Northeast India. Open J Ecol. 2016;6(10):598-612. https://doi.org/10.4236/oje.2016.610057.
  115. Manandhar R, Kim JH, Kim JT. Environmental, social and economic sustainability of bamboo and bamboo-based construction materials in buildings. J Asian Archit Build Eng. 2019;18(2):49-59. https://doi.org/10.1080/13467581.2019.1595629.
  116. Manpoong C, De Mandal S, Bangaruswamy DK, Perumal RC, Benny J, Beena PS, et al. Linking rhizosphere soil biochemical and microbial community characteristics across different land use systems in mountainous region in Northeast India. Meta Gene. 2020;23:100625. https://doi.org/10.1016/j.mgene.2019.100625.
  117. Manpoong C, Tripathi SK. Soil properties under different land use systems of Mizoram, North East India. J Appl Nat Sci. 2019;11(1):121-5. https://doi.org/10.31018/jans.v11i1.1999.
  118. Manpoong C, Wapongnungsang, Tripathi SK. Soil carbon stock in different land-use systems in the hilly terrain of Mizoram, Northeast India. J Appl Nat Sci. 2021;13(2):723-8. https://doi.org/10.31018/jans.v13i2.2615.
  119. Ming NGJ, Binte Mostafiz S, Johon NS, Abdullah Zulkifli NS, Wagiran A. Combination of plant growth regulators, maltose, and partial desiccation treatment enhance somatic embryogenesis in selected Malaysian rice cultivar. Plants (Basel). 2019;8(6):144. https://doi.org/10.3390/plants8060144.
  120. Mishra Y, Patel P, Ansari SA. Acclimatization and macroproliferation of micropropagated plants of Bambusa tulda Roxb. Asian J Exp Biol Sci. 2011;2(3):498-501.
  121. Mohammadi Z, Mohammadi Limaei S, Lohmander P, Olsson L. Estimating the aboveground carbon sequestration and its economic value (case study: Iranian Caspian forests). J For Sci. 2017;63(11):511-8. https://doi.org/10.17221/88/2017-JFS.
  122. Moon SH, Venkatesh J, Yu JW, Park SW. Differential induction of meristematic stem cells of Catharanthus roseus and their characterization. C R Biol. 2015;338(11):745-56. https://doi.org/10.1016/j.crvi.2015.05.005.
  123. Mudoi KD, Saikia SP, Borthakur M. Effect of nodal positions, seasonal variations, shoot clump and growth regulators on micropropagation of commercially important bamboo, Bambusa nutans Wall. ex. Munro. Afr J Biotechnol. 2014;13(19):1961-72. https://doi.org/10.5897/AJB2014.13659.
  124. Mujuru L. The potential of carbon sequestration to mitigate against climate change in forests and agro ecosystems of Zimbabwe [PhD dissertation]. Wageningen: Wageningen University; 2014.
  125. Mulatu Y, Alemayehu A, Tadesse Z. Bamboo species introduced in Ethiopia, biological, ecological and management aspects. Addis Ababa: Ethiopian Environment and Forest Research Institute; 2016. pp. 1-75.
  126. Mundim FM, Pringle EG. Whole-plant metabolic allocation under water stress. Front Plant Sci. 2018;9:852. https://doi.org/10.3389/fpls.2018.00852.
  127. Muralidharan EM. Achievements and challenges in micropropagation of bamboo. Paper presented at: Proceedings of National Workshop on Global Warming and its Implications for Kerala; 2009 Jan 19-21; Kerala, India. Kerala: Kerala Forests and Wildlife Department, Forest Headquarters, 2009. p. 145-9.
  128. Mustafa AA, Derise MR, Yong WTL, Rodrigues KF. A concise review of Dendrocalamus asper and related bamboos: germplasm conservation, propagation and molecular biology. Plants (Basel). 2021;10(9):1897. https://doi.org/10.3390/plants10091897.
  129. Nadgir AL, Phadke CH, Gupta PK, Parsharami VA, Nair S, Mascarenhas AF. Rapid multiplication of bamboo by tissue culture. Silvae Genet. 1984;33(6):219-23.
  130. Nath AJ, Lal R, Das AK. Managing woody bamboos for carbon farming and carbon trading. Glob Ecol Conserv. 2015;3:654-63. https://doi.org/10.1016/j.gecco.2015.03.002.
  131. Negi D, Saxena S. Micropropagation of Bambusa balcooa Roxb. through axillary shoot proliferation. In Vitro Cell Dev Biol Plant. 2011;47:604-10. https://doi.org/10.1007/s11627-011-9403-2.
  132. Nfornkah BN, Kaam R, Martin T, Louis Z, Cedric CD, Forje GW, et al. Culm allometry and carbon storage capacity of Bambusa vulgaris Schrad. ex J.C.WendL. in the tropical evergreen rain forest of Cameroon. J Sustain For. 2021;40(6):622-38. https://doi.org/10.1080/10549811.2020.1795688.
  133. Nongdam P, Tikendra L. The nutritional facts of bamboo shoots and their usage as important traditional foods of Northeast India. Int Sch Res Not. 2014;2014:679073. https://doi.org/10.1155/2014/679073.
  134. Nyirambangutse B, Zibera E, Uwizeye FK, Nsabimana D, Bizuru E, Pleijel H, et al. Carbon stocks and dynamics at different successional stages in an Afromontane tropical forest. Biogeosciences. 2017;14(5):1285-303. https://doi.org/10.5194/bg-14-1285-2017.
  135. Ornellas TS, Fritsche Y, Medina EC, Guerra MP. Somatic embryogenesis from young inflorescences of the giant bamboo Dendrocalamus asper (Schult f.) Backer ex Heyne. Res Sq. [Preprint]. 2021. Available from: https://doi.org/10.21203/rs.3.rs-1036356/v1.
  136. Ornellas TS, Werner D, Holderbaum DF, Scherer RF, Guerra MP. Effects of Vitrofural, BAP and meta-Topolin in the in vitro culture of Dendrocalamus asper. Acta Hortic. 2017;1155:285-92. https://doi.org/10.17660/ActaHortic.2017.1155.41.
  137. Oseni OM, Pande V, Nailwal TK. A review on plant tissue culture, a technique for propagation and conservation of endangered plant species. Int J Curr Microbiol Appl Sci. 2018;7(7):3778-86. https://doi.org/10.20546/ijcmas.2018.707.438.
  138. Partey ST, Sarfo DA, Frith O, Kwaku M, Thevathasan NV. Potentials of bamboo-based agroforestry for sustainable development in Sub-Saharan Africa: a review. Agric Res. 2017;6:22-32. https://doi.org/10.1007/s40003-017-0244-z.
  139. Parthasarathy P, Mackey HR, Mariyam S, Zuhara S, Al-Ansari T, McKay G. Char products from bamboo waste pyrolysis and acid activation. Front Mater. 2021;7:624791. https://doi.org/10.3389/fmats.2020.624791.
  140. Piouceau J, Panfili F, Bois G, Anastase M, Feder F, Morel J, et al. Bamboo plantations for phytoremediation of pig slurry: plant response and nutrient uptake. Plants (Basel). 2020;9(4):522. https://doi.org/10.3390/plants9040522.
  141. Prasatthong D. Micropropagation of Pai Sangmon 'Nuan Rachini' (Dendrocalamus sericeus Munro) via callus induction [Thesis]. Bangkok: Silpakorn University; 2020.
  142. Quiroga RAR, Li T, Lora G, Andersen LE. A measurement of the carbon sequestration potential of Guadua angustifolia in the Carrasco National Park, Bolivia. La Paz: Institute for Advanced Development Studies; 2013. pp. 1-17.
  143. Rajput BS, Jani MD, Gujjar MR, Shekhawat MS. Effective and large scale in vitro propagation of Dendrocalamus strictus (Roxb.) nees using nodal segments as explants. World Sci News. 2019;130:238-49.
  144. Rajput DS, Ram B, Rathore TS. In vitro regeneration of Bambusa nutans Wall. via somatic embryogenesis and evaluation of genetic fidelity using issr markers. Plant Cell Biotechnol Mol Biol. 2021;22(15-16):145-55.
  145. Raju R, Divya C. Micropropagation of Syzygium densiflorum Wall. ex Wight & arn.: an endemic and endangered semi-evergreen tree species of the Western Ghats, India. Trees For People. 2020;2:100037. https://doi.org/10.1016/j.tfp.2020.100037.
  146. Rawat RS, Arora G, Rawat VRS, Borah HR, Singson MZ, Chandra G, et al. Estimation of biomass and carbon stock of bamboo species through development of allometric equations. Dehradun: Indian Council of Forestry Research and Education; 2018. pp. 1-34.
  147. Ren Y, Wei X, Zhang L, Cui S, Chen F, Xiong Y, et al. Potential for forest vegetation carbon storage in Fujian Province, China, determined from forest inventories. Plant Soil. 2011;345:125-40. https://doi.org/10.1007/s11104-011-0766-2.
  148. Sabagh AE, Mbarki S, Hossain A, Iqbal MA, Islam MS, Raza A, et al. Potential role of plant growth regulators in administering crucial processes against abiotic stresses. Front Agron. 2021;3:648694. https://doi.org/10.3389/fagro.2021.648694.
  149. Sabbir MA, Hoq SMA, Fancy SF. Determination of tensile property of bamboo for using as potential reinforcement in the concrete. Int J Civ Environ Eng. 2011;11(5):47-51.
  150. Sadiku NA, Oluyege AO, Sadiku IB. Analysis of the calorific and fuel value index of bamboo as a source of renewable biomass feedstock for enegry generation in Nigeria. Lignocellulose. 2016;5(1):34-49.
  151. Sahoo SS, Vijay VK, Chandra R, Kumar H. Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Clean Eng Technol. 2021a;3:100101. https://doi.org/10.1016/j.clet.2021.100101.
  152. Sahoo UK, Tripathi OP, Nath AJ, Deb S, Das DJ, Gupta A, et al. Quantifying tree diversity, carbon stocks, and sequestration potential for diverse land uses in Northeast India. Front Environ Sci. 2021b;9:724950. https://doi.org/10.3389/fenvs.2021.724950.
  153. Sathiyavani E, Prabaharan NK, Krishna Surendar K. Role of mineral nutrition on root growth of crop plants - a review. Int J Curr Microbiol Appl Sci. 2017;6(4):2810-37. https://doi.org/10.20546/ijcmas.2017.604.324.
  154. Schroder S. Top 20 Best Bamboo Species. 2019. https://www.guaduabamboo.com/blog/top-20-best-bamboo-species. Accessed 21 Feb 2022.
  155. Seethalakshmi KK, Jijeesh CM, Balagopalan M. Bamboo plantations: an approach to carbon sequestration. Paper presented at: Proceedings of National Workshop on Global Warming and its Implications for Kerala; 2009 Jan 19-21; Kerala, India. Kerala: Kerala Forests and Wildlife Department, Forest Headquarters, 2009. p. 127-34.
  156. Selecky T, Bellingrath-Kimura SD, Kobata Y, Yamada M, Guerrini IA, Umemura HM, et al. Changes in carbon cycling during development of successional agroforestry. Agriculture. 2017;7(3):25. https://doi.org/10.3390/agriculture7030025.
  157. Sevik H, Guney K. Effects of IAA, IBA, NAA, and GA3 on rooting and morphological features of Melissa officinalis L. stem cuttings. ScientificWorldJournal. 2013;2013:909507. https://doi.org/10.1155/2013/909507.
  158. Sharma A, Linggi B, Singh SR, Singh MS. Implementation of bamboo industry to generate employment in Arunachal Pradesh. In: Manpoong C, editor. Natural resources management and sustainable agriculture with reference to North-East India. New Delhi: Eduworld Publication; 2020. p. 48.
  159. Sharma P, Sarma KP. In vitro propagation of Bambusa balcooa for a better environment. Paper presented at: International Conference on Advances in Biotechnology and Pharmaceutical Sciences (ICABPS'2011); 2011 Dec 23-24; Bangkok, Thailand. 2011. p. 248-52.
  160. Sharma S, Rana VS, Prasad H, Lakra J, Sharma U. Appraisal of carbon capture, storage, and utilization through fruit crops. Front Environ Sci. 2021;9:700768. https://doi.org/10.3389/fenvs.2021.700768.
  161. Sheila R. Bamboo construction as a sustainable building technology from a structural and materials engineering perspective [Thesis]. Cape Town: University of Cape Town; 2021.
  162. Shibu V. Comparative study on morphology, anatomy and mycoflora of Bambusa vulgaris from polluted and non-polluted sites of Puthur Panchayath [PhD dissertation]. Irinjalakuda: Christ College (Autonomous), Irinjalakuda; 2021.
  163. Singh AN, Singh JS. Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. For Ecol Manag. 1999;119(1):195-207. https://doi.org/10.1016/S0378-1127(98)00523-4.
  164. Singh KA, Kochhar S. Effect of clump density/spacing on the productivity and nutrient uptake in Bambusa pallida and the changes in soil properties. J Bamboo Ratt. 2005;4(4):323-34. https://doi.org/10.1163/156915905775008354
  165. Singh S, Singh H, Sharma SK, Nautiyal R. Seasonal variation in biochemical responses of bamboo clones in the sub-tropical climate of Indian Himalayan foothills. Heliyon. 2021;7(4):e06859. https://doi.org/10.1016/j.heliyon.2021.e06859.
  166. Singh SR, Singh R, Kalia S, Dalal S, Dhawan AK, Kalia RK. Limitations, progress and prospects of application of biotechnological tools in improvement of bamboo-a plant with extraordinary qualities. Physiol Mol Biol Plants. 2013;19(1):21-41. https://doi.org/10.1007/s12298-012-0147-1.
  167. Sirsat DD, Raut MM, Raut PD, Dalvi SM, Patil SS, Gayakwad CP, et al. Assessment of carbon sequestration under different age of bamboo plantation. J Pharmacogn Phytochem. 2021;10(1):393-7.
  168. Smith P, Cotrufo MF, Rumpel C, Paustian K, Kuikman PJ, Elliott JA, et al. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil. 2015;1(2):665-85. https://doi.org/10.5194/soil-1-665-2015.
  169. Sodhi NS, Ehrlich PR. Conservation biology for all. Oxford: Oxford University Press; 2010. pp. 1-358.
  170. Sohel MSI, Alamgir M, Akhter S, Rahman M. Carbon storage in a bamboo (Bambusa vulgaris) plantation in the degraded tropical forests: implications for policy development. Land Use Policy. 2015;49:142-51. https://doi.org/10.1016/j.landusepol.2015.07.011.
  171. Song X, Peng C, Ciais P, Li Q, Xiang W, Xiao W, et al. Nitrogen addition increased CO2 uptake more than non-CO2 greenhouse gases emissions in a Moso bamboo forest. Sci Adv. 2020;6(12):eaaw5790. https://doi.org/10.1126/sciadv.aaw5790.
  172. Soumare A, Diedhiou AG, Arora NK, Tawfeeq Al-Ani LK, Ngom M, Fall S, et al. Potential role and utilization of plant growth promoting microbes in plant tissue culture. Front Microbiol. 2021;12:649878. https://doi.org/10.3389/fmicb.2021.649878.
  173. Sujarwo W. Stand biomass and carbon storage of bamboo forest in Penglipuran traditional village, Bali (Indonesia). J For Res. 2016;27:913-7. https://doi.org/10.1007/s11676-016-0227-0.
  174. Suwal MM, Lamichhane J, Gauchan DP. Assessment of genetic stability of micropropagated Bambusa balcooa Roxb. using RAPD marker. Plant Tissue Cult Biotechnol. 2021;31(1):81-95. https://doi.org/10.3329/ptcb.v31i1.54114.
  175. Suwal MM, Lamichhane J, Gauchan DP. Regeneration technique of bamboo species through nodal segments: a review. Nepal J Biotechnol. 2020;8(1):54-68. https://doi.org/10.3126/njb.v8i1.30209.
  176. Takano KT, Hibino K, Numata A, Oguro M, Aiba M, Shiogama H, et al. Detecting latitudinal and altitudinal expansion of invasive bamboo Phyllostachys edulis and Phyllostachys bambusoides (Poaceae) in Japan to project potential habitats under 1.5℃-4.0℃ global warming. Ecol Evol. 2017;7(23):9848-59. https://doi.org/10.1002/ece3.3471.
  177. Tang X, Zhao X, Bai Y, Tang Z, Wang W, Zhao Y, et al. Carbon pools in China's terrestrial ecosystems: new estimates based on an intensive field survey. Proc Natl Acad Sci U S A. 2018;115(16):4021-6. https://doi.org/10.1073/pnas.1700291115.
  178. Tariyal K, Upadhyay A, Tewari S, Melkania U. Plant and soil carbon stock and carbon sequestration potential in four major bamboo species of North India. J Adv Lab Res Biol. 2013;4(3):100-8.
  179. Taub D. Effects of rising atmospheric concentrations of carbon dioxide on plants. Nat Educ Knowl. 2010;3(10):21.
  180. Teixeira Da Silva JA, Hossain MM, Sharma M, Dobranszki J, Cardoso JC, Zeng S. Acclimatization of in vitro-derived Dendrobium. Hortic Plant J. 2017;3:110-24. https://doi.org/10.1016/j.hpj.2017.07.009.
  181. Teixeira GC, Goncalves DS, de Barros Modesto AC, Souza DMSC, de Carvalho D, Magalhaes TA, et al. Clonal micro-garden formation of Bambusa vulgaris: effect of seasonality, culture environment, antibiotic and plant growth regulator on in vitro culture. CERNE. 2021;27(1):e-102979. https://doi.org/10.1590/01047760202127012979.
  182. Thokchom A, Yadava PS. Biomass, carbon stock and sequestration potential of Schizostachyum pergracile bamboo forest of Manipur, north east India. Trop Ecol. 2017;58(1):23-32.
  183. Tian H, Chen G, Lu C, Xu X, Ren W, Zhang B, et al. 2015. Global methane and nitrous oxide emissions from terrestrial ecosystems due to multiple environmental changes. Ecosyst Health Sustain. 2015;1(1):1-20. https://doi.org/10.1890/EHS14-0015.1.
  184. Tripathi YC. Bamboo entrepreneurship - opportunities for rural employment. Indian For. 2008;134(9):1199-210.
  185. Urgesa T. Carbon storage potential of Ethiopian highland bamboo (Arundinaria alpina (K. schum): a case study of Adiyo woreda, South West Ethiopia. Int J Environ Sci Nat Res. 2019;16(5):555949. https://doi.org/10.19080/IJESNR.2019.16.555949.
  186. Vanlalfakawma DC. Carbon and nitrogen sequestration potential of bamboo forests of Mizoram [PhD dissertation]. Aizawl: Mizoram University; 2014.
  187. Vashum KT, Jayakumar S. Methods to estimate above-ground biomass and carbon stock in natural forests- a review. J Ecosyst Ecogr. 2012;2:116. https://doi.org/10.4172/2157-7625.1000116.
  188. Venkatachalam P, Kalaiarasi K, Sreeramanan S. Influence of plant growth regulators (PGRs) and various additives on in vitro plant propagation of Bambusa arundinacea (Retz.) Wild: a recalcitrant bamboo species. J Genet Eng Biotechnol. 2015;13(2):193-200. https://doi.org/10.1016/j.jgeb.2015.09.006.
  189. Verma P, Mishra N. A review in vitro regeneration of bamboo plants by plant culture techniques. Int J Adv Sci Eng Technol. 2018;6(4):58-67.
  190. Waghmare VG, Raut VK, Kale AN, Awachare PK. Rapid in vitro propagation of Bambusa balcooa Roxb. (Bamboo). Int J Curr Microbiol Appl Sci. 2021;10(3):651-7. https://doi.org/10.20546/ijcmas.2021.1003.083.
  191. Waikhom SD, Louis B. An effective protocol for micropropagation of edible bamboo species (Bambusa tulda and Melocanna baccifera) through nodal culture. ScientificWorldJournal. 2014;2014:345794. https://doi.org/10.1155/2014/345794.
  192. Wang B, Wei W, Liu C, You W, Niu X, Man R. Biomass and carbon stock in moso bamboo forests in subtropical china: characteristics and implications. J Trop For Sci. 2013;25(1):137-48.
  193. Wang DH, Chen TH. Bamboo resources and carbon storage in Taiwan. Paper presented at: 10th World Bamboo Congress, Korea; 2015 Sep 17-22; Damyang, Korea. Red Hook: World Bamboo Organization, 2015. p. 1-18.
  194. Wang J, Song L, Gong X, Xu J, Li M. Functions of Jasmonic acid in plant regulation and response to abiotic stress. Int J Mol Sci. 2020a; 21(4):1446. https://doi.org/10.3390/ijms21041446.
  195. Wang K, Hu D, Deng J, Shangguan Z, Deng L. Biomass carbon storages and carbon sequestration potentials of the Grain for Green Program-Covered Forests in China. Ecol Evol. 2018;8(15):7451-61. https://doi.org/10.1002/ece3.4228.
  196. Wang Q, Li S, Pisarenko Z. Modeling carbon emission trajectory of China, US and India. J Clean Prod. 2020b;258:120723. https://doi.org/10.1016/j.jclepro.2020.120723.
  197. Wang X, Yan J, Zhang X, Zhang S, Chen Y. Organic manure input improves soil water and nutrients use for sustainable maize (Zea mays. L) productivity on the Loess Plateau. PLoS One. 2020c;15(8):e0238042. https://doi.org/10.1371/journal.pone.0238042.
  198. Xu L, Shi Y, Zhou G, Xu X, Liu E, Zhou Y, et al. Temporal change in aboveground culms carbon stocks in the moso bamboo forests and its driving factors in Zhejiang Province, China. Forests. 2017a;8(10):371. https://doi.org/10.3390/f8100371.
  199. Xu M, Ji H, Zhuang S. Carbon stock of Moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China. PLoS One. 2018;13(2):e0193024. https://doi.org/10.1371/journal.pone.0193024.
  200. Xu M, Zhuang S, Gui R. Soil hypoxia induced by an organic-material mulching technique stimulates the bamboo rhizome up-floating of Phyllostachys praecox. Sci Rep. 2017b;7(1):14353. https://doi.org/10.1038/s41598-017-14798-8.
  201. Xu QF, Liang CF, Chen JH, Li YC, Qin H, Fuhrmann JJ. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes+. Glob Ecol Conserv. 2020;21:e00787. https://doi.org/10.1016/j.gecco.2019.e00787.
  202. Ye S, Cai C, Ren H, Wang W, Xiang M, Tang X, et al. An efficient plant regeneration and transformation system of Ma bamboo (Dendrocalamus latiflorus Munro) started from young shoot as explant. Front Plant Sci. 2017;8:1298. https://doi.org/10.3389/fpls.2017.01298.
  203. Yen TM, Lee JS. Comparing aboveground carbon sequestration between moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. For Ecol Manag. 2011;261(6):995-1002. https://doi.org/10.1016/j.foreco.2010.12.015.
  204. Yen TM. Comparing aboveground structure and aboveground carbon storage of an age series of moso bamboo forests subjected to different management strategies. J For Res. 2015;20(1):1-8. https://doi.org/10.1007/s10310-014-0455-0.
  205. Yiping L, Yanxia L, Buckingham K, Henley G, Guomo Z. Bamboo and climate change mitigation: a comparative analysis of carbon sequestration. Beijing: International Network for Bamboo and Rattan; 2010. pp. 1-47.
  206. Yuan JL, Yue JJ, Gu XP, Lin CS. Flowering of woody bamboo in tissue culture systems. Front Plant Sci. 2017;8:1589. https://doi.org/10.3389/fpls.2017.01589.
  207. Yuen JQ, Fung T, Ziegler AD. Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For Ecol Manag. 2017;393:113-38. https://doi.org/10.1016/j.foreco.2017.01.017.
  208. Zahid A, Yike G, Kubik S, Fozia, Ramzan M, Sardar H, et al. Plant growth regulators modulate the growth, physiology, and flower quality in rose (Rosa hybirda). J King Saud Univ Sci. 2021;33(6):101526. https://doi.org/10.1016/j.jksus.2021.101526.
  209. Zhang HX, Zhuang SY, Ji HB, Zhou S, Sun B. Estimating carbon storage of moso bamboo forest ecosystem in Southern China. Soils. 2014;46(3):413-8.
  210. Zheng X, Lin S, Fu H, Wan Y, Ding Y. The bamboo flowering cycle sheds light on flowering diversity. Front Plant Sci. 2020;11:381. https://doi.org/10.3389/fpls.2020.00381.
  211. Zubrod JP, Bundschuh M, Arts G, Bruhl CA, Imfeld G, Knabel A, et al. Fungicides: an overlooked pesticide class? Environ Sci Technol. 2019;53:3347-65. https://doi.org/10.1021/acs.est.8b04392.