• Title/Summary/Keyword: Verification and validation

Search Result 563, Processing Time 0.03 seconds

Geomechanical and hydrogeological validation of hydro-mechanical two-way sequential coupling in TOUGH2-FLAC3D linking algorithm with insights into the Mandel, Noordbergum, and Rhade effects

  • Lee, Sungho;Park, Jai-Yong;Kihm, Jung-Hwi;Kim, Jun-Mo
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.437-454
    • /
    • 2022
  • The hydro-mechanical (HM) two-way sequential coupling in the TOUGH2-FLAC3D linking algorithm is validated completely and successfully in both M to H and H to M directions, which are initiated by mechanical surface loading for geomechanical validation and hydrological groundwater pumping for hydrogeological validation, respectively. For such complete and successful validation, a TOUGH2-FLAC3D linked numerical model is developed first by adopting the TOUGH2-FLAC3D linking algorithm, which uses the two-way (fixed-stress split) sequential coupling scheme and the implicit backward time stepping method. Two geomechanical and two hydrogeological validation problems are then simulated using the linked numerical model together with basic validation strategies and prerequisites. The second geomechanical and second hydrogeological validation problems are also associated with the Mandel effect and the Noordbergum and Rhade effects, respectively, which are three phenomenally well-known but numerically challenging HM effects. Finally, sequentially coupled numerical solutions are compared with either analytical solutions (verification) or fully coupled numerical solutions (benchmarking). In all the four validation problems, they show almost perfect to extremely or very good agreement. In addition, the second geomechanical validation problem clearly displays the Mandel effect and suggests a proper or minimum geometrical ratio of the height to the width for the rectangular domain to maximize agreement between the numerical and analytical solutions. In the meantime, the second hydrogeological validation problem clearly displays the Noordbergum and Rhade effects and implies that the HM two-way sequential coupling scheme used in the linked numerical model is as rigorous as the HM two-way full coupling scheme used in a fully coupled numerical model.

An Optimized V&V Methodology to Improve Quality for Safety-Critical Software of Nuclear Power Plant (원전 안전-필수 소프트웨어의 품질향상을 위한 최적화된 확인 및 검증 방안)

  • Koo, Seo-Ryong;Yoo, Yeong-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • As the use of software is more wider in the safety-critical nuclear fields, so study to improve safety and quality of the software has been actively carried out for more than the past decade. In the nuclear power plant, nuclear man-machine interface systems (MMIS) performs the function of the brain and neural networks of human and consists of fully digitalized equipments. Therefore, errors in the software for nuclear MMIS may occur an abnormal operation of nuclear power plant, can result in economic loss due to the consequential trip of the nuclear power plant. Verification and validation (V&V) is a software-engineering discipline that helps to build quality into software, and the nuclear industry has been defined by laws and regulations to implement and adhere to a through verification and validation activities along the software lifecycle. V&V is a collection of analysis and testing activities across the full lifecycle and complements the efforts of other quality-engineering functions. This study propose a methodology based on V&V activities and related tool-chain to improve quality for software in the nuclear power plant. The optimized methodology consists of a document evaluation, requirement traceability, source code review, and software testing. The proposed methodology has been applied and approved to the real MMIS project for Shin-Hanul units 1&2.

Enhancing Document Security with Computer Generated Hologram Encryption: Comprehensive Solution for Mobile Verification and Offline Decryption

  • Leehwan Hwang;Seunghyun Lee;Jongsung Choi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.169-175
    • /
    • 2024
  • In this paper, we introduce a novel approach to enhance document security by integrating Computer Generated Hologram(CGH) encryption technology with a system for document encryption, printing, and subsequent verification using a smartphone application. The proposed system enables the encryption of documents using CGH technology and their printing on the edges of the document, simplifying document verification and validation through a smartphone application. Furthermore, the system leverages high-resolution smartphone cameras to perform online verification of the original document and supports offline document decryption, ensuring tamper detection even in environments without internet connectivity. This research contributes to the development of a comprehensive and versatile solution for document security and integrity, with applications in various domains.

A Study on Sleep-Wake Assessment for Substantiation of Sleep Products (수면 제품 실증을 위한 수면-각성 평가에 대한 고찰)

  • Lee, Yu Jin;Kim, Da-Jeong;Lee, Hayoung
    • Sleep Medicine and Psychophysiology
    • /
    • v.27 no.2
    • /
    • pp.51-55
    • /
    • 2020
  • In this paper, we reviewed domestic and foreign cases and evaluation methods for validation of sleep products for development of the domestic sleep industry. Foreign companies and organizations are trying to verify products relatively systematically for demonstration purposes, but they are using different methods depending on the institution, and standardized validation guidelines have not been established. In Korea, there has been little evaluation including objective verification for sleep products. Sleep-wake evaluation for validation of sleep products requires expert evaluation of the product and of the product effectiveness by users, and subjective and objective sleep-wake evaluations and circadian rhythm evaluation methods can be used. For more accurate verification, experimental designs such as randomization method, control product utilization method, and cross-experiment design can be used.

Digital Forensics: Review of Issues in Scientific Validation of Digital Evidence

  • Arshad, Humaira;Jantan, Aman Bin;Abiodun, Oludare Isaac
    • Journal of Information Processing Systems
    • /
    • v.14 no.2
    • /
    • pp.346-376
    • /
    • 2018
  • Digital forensics is a vital part of almost every criminal investigation given the amount of information available and the opportunities offered by electronic data to investigate and evidence a crime. However, in criminal justice proceedings, these electronic pieces of evidence are often considered with the utmost suspicion and uncertainty, although, on occasions are justifiable. Presently, the use of scientifically unproven forensic techniques are highly criticized in legal proceedings. Nevertheless, the exceedingly distinct and dynamic characteristics of electronic data, in addition to the current legislation and privacy laws remain as challenging aspects for systematically attesting evidence in a court of law. This article presents a comprehensive study to examine the issues that are considered essential to discuss and resolve, for the proper acceptance of evidence based on scientific grounds. Moreover, the article explains the state of forensics in emerging sub-fields of digital technology such as, cloud computing, social media, and the Internet of Things (IoT), and reviewing the challenges which may complicate the process of systematic validation of electronic evidence. The study further explores various solutions previously proposed, by researchers and academics, regarding their appropriateness based on their experimental evaluation. Additionally, this article suggests open research areas, highlighting many of the issues and problems associated with the empirical evaluation of these solutions for immediate attention by researchers and practitioners. Notably, academics must react to these challenges with appropriate emphasis on methodical verification. Therefore, for this purpose, the issues in the experiential validation of practices currently available are reviewed in this study. The review also discusses the struggle involved in demonstrating the reliability and validity of these approaches with contemporary evaluation methods. Furthermore, the development of best practices, reliable tools and the formulation of formal testing methods for digital forensic techniques are highlighted which could be extremely useful and of immense value to improve the trustworthiness of electronic evidence in legal proceedings.

Application and Analysis of the Paradigm of Software Safety Assurance for a Digital Reactor Protection System in Nuclear Power Plants (원전 디지털 원자로보호계통 소프트웨어 안전보증 패러다임 적용 및 분석)

  • Kwon, Kee-Choon;Lee, Jang-Soo;Jee, Eunkyoung
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.6
    • /
    • pp.335-342
    • /
    • 2017
  • In the verification and validation procedures regarding the safety-critical software of nuclear power plants for the attainment of the requisite license from the regulatory body, it is difficult to judge the safety and dependability of the development, implementation, and validation activities through a simple reading and review of the documentation. Therefore, these activities, especially safety assurance activities, require systematic evaluation techniques to determine that software faults are acceptable level. In this study, a safety case methodology is applied in an assessment of the level and depth of the results of the development and validation of a manufacturer in its targeting of the bistable processor of a digital reactor protection system, and the evaluation results are analyzed. This study confirms the possibility of an effective supplementation of the existing safety demonstration method through the application of the employed safety case methodology.

The Model of Appraisal Method on Authentic Records (전자기록의 진본 평가 시스템 모형 연구)

  • Kim, Ik-Han
    • The Korean Journal of Archival Studies
    • /
    • no.14
    • /
    • pp.91-117
    • /
    • 2006
  • Electronic Records need to be appraised the authenticity as well as the value itself. There has been various kinds of discussion about how records to be appraised the value of themselves, but there's little argument about how electronic records to be appraised the authenticity of themselves. Therefore this article is modeling some specific authenticity appraisal methods and showing each stages those methods should or may be applied. At the Ingest stage, integrity verification right after records creation in the organization which produced the records, quality and integrity verification about the transferred in the organization which received the records and integrity check between SIP and AIP in the organization which received and preserved the records are essential. At the Preservation stage, integrity check between same AIPs stored in different medium separately and validation of records where or not damaged and recovery damaged records are needed. At the various Processing stages, suitability evaluation after changing the record's management control meta data and changing the record's classification, integrity check after records migration and periodical validation and integrity verification about DIPs are required. For those activities, the appraisal methods including integrity verification, content consistency check, suitability evaluation about record's meta data, feasibility check of unauthorized update and physical status validation should be applied to the electronic records management process.

Mathematical Verification of a Nuclear Power Plant Protection System Function with Combined CPN and PVS

  • Koo, Seo-Ryong;Son, Han-Seong;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.31 no.2
    • /
    • pp.157-171
    • /
    • 1999
  • In this work, an automatic software verification method for Nuclear Power Plant (NPP) protection system is developed. This method utilizes Colored Petri Net (CPN) for system modeling and Prototype Verification System (PVS) for mathematical verification. In order to help flow-through from modeling by CPN to mathematical proof by PVS, an information extractor from CPN models has been developed in this work. In order to convert the extracted information to the PVS specification language, a translator also has been developed. ML that is a higher-order functional language programs the information extractor and translator. This combined method has been applied to a protection system function of Wolsong NPP SDS2(Steam Generator Low Level Trip). As a result of this application, we could prove completeness and consistency of the requirement logically. Through this work, in short, an axiom or lemma based-analysis method for CPN models is newly suggested in order to complement CPN analysis methods and a guideline for the use of formal methods is proposed in order to apply them to NPP Software Verification and Validation.

  • PDF

Script-based Test System for Rapid Verification of Atomic Models in Discrete Event System Specification Simulation

  • Nam, Su-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.101-107
    • /
    • 2022
  • Modeling and simulation is a technique used for operational verification, performance analysis, operational optimization, and prediction of target systems. Discrete Event System Specification (DEVS) of this representative technology defines models with a strict formalism and stratifies the structures between the models. When the atomic DEVS models operate with an intention different the target system, the simulation may lead to erroneous decision-making. However, most DEVS systems have the exclusion of the model test or provision of the manual test, so developers spend a lot of time verifying the atomic models. In this paper, we propose a script-based automated test system for accurate and fast validation of atomic models in Python-based DEVS. The proposed system uses both the existing method of manual testing and the new method of the script-based testing. As Experimental results in our system, the script-based test method was executed within 24 millisecond when the script was executed 10 times consecutively. Thus, the proposed system guarantees a fast verification time of the atomic models in our script-based test and improves the reusability of the test script.