• Title/Summary/Keyword: Verification and validation

Search Result 568, Processing Time 0.032 seconds

Establishment of Analytical Method for Residues of Ethychlozate, a Plant Growth Regulator, in Brown Rice, Mandarin, Pepper, Potato, and Soybean Using HPLC/FLD

  • Kim, Jae-Young;Lee, Jin Hwan;Lee, Sang-Mok;Chae, Young-Sik;Rhee, Gyu-Seek;Chang, Moon-Ik
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.111-119
    • /
    • 2015
  • BACKGROUND: Ethychlozate (ECZ) is a plant growth regulator of synthetic auxin for agricultural commodities (ACs). Accurate and sensitive method to determine ECZ in diverse ACs on global official purpose is required to legal residue regulation. As the current official method is confined to the limited type of crops with poor validation, this study was conducted to improve and extend the ECZ method using high-performance liquid chromatography (HPLC) in all the registered crops with method verification. METHODS AND RESULTS: ECZ and its acidic metabolite (ECZA) were both extracted from acidified samples with acetone and briefly purified by dichloromethane partition. ECZ was hydrolyzed to form ECZA and the combined ECZA was finally purified by ion-associated partition including hexane-washing. The instrumental quantitation was performed using HPLC/ FLD under ion-suppression of ECZA with no interference by sample co-extractives. The average recoveries of intra- and inter-day experiment ranged from 82.0 to 105.2% and 81.7 to 102.8%, respectively. The repeatability and reproducibility for intra- and inter-day measurements expressed as a relative standard deviation was less than 8.7% and 7.4%, respectively. CONCLUSION: Established analytical method for ECZ residue in ACs was applicable to the nation-wide pesticide residues monitoring program with the acceptable level of sensitivity, repeatability and reproducibility.

Tissue Microarrays in Biomedical Research

  • Chung, Joon-Yong;Kim, Nari;Joo, Hyun;Youm, Jae-Boum;Park, Won-Sun;Lee, Sang-Kyoung;Warda, Mohamad;Han, Jin
    • Bioinformatics and Biosystems
    • /
    • v.1 no.1
    • /
    • pp.28-37
    • /
    • 2006
  • Recent studies in molecular biology and proteomics have identified a significant number of novel diagnostic, prognostic, and therapeutic disease markers. However, validation of these markers in clinical specimens with traditional histopathological techniques involves low throughput and is time consuming and labor intensive. Tissue microarrays (TMAs) offer a means of combining tens to hundreds of specimens of tissue onto a single slide for simultaneous analysis. This capability is particularly pertinent in the field of cancer for target verification of data obtained from cDNA micro arrays and protein expression profiling of tissues, as well as in epidemiology-based investigations using histochemical/immunohistochemical staining or in situ hybridization. In combination with automated image analysis, TMA technology can be used in the global cellular network analysis of tissues. In particular, this potential has generated much excitement in cardiovascular disease research. The following review discusses recent advances in the construction and application of TMAs and the opportunity for developing novel, highly sensitive diagnostic tools for the early detection of cardiovascular disease.

  • PDF

A Research on the Verification Test Procedure for Quantitative Explosion Risk Assessment and Management of Offshore Installations (해양플랜트 폭발사고 위험도 평가/관리를 위한 실증시험기법에 관한 연구)

  • Kim, Bong Ju;Ha, Yeon Chul;Seo, Jung Kwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.215-221
    • /
    • 2018
  • The structural design of offshore installations against explosions has been required to protect vital areas (e.g. control room, worker's area etc.) and minimize the damage from explosion accidents. Because the explosion accident will not only result in significant casualties and economic losses, but also cause serious pollution and damage to surrounding environment and coastal marine ecosystems. Over the past two decades, an incredible efforts was made to develop reliable methods to reduce and manage the explosion risk. Among the methods Quantitative Risk Assessment and Management (QRA&M) is the one of cutting-edge technologies. The explosion risk can be quantitatively assessed by the product of explosion frequency based on probability calculation and consequence analyzed using computer simulations, namely Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA). However to obtain reliable consequence analysis results by CFD and FEA, uncertainties associate with modeling and simulation are needed to be identified and validated by comparison with experimental data. Therefore, large-scaled explosion test procedure is developed in this study. And developed test procedure can be helpful to obtain precious test data for the validation of consequence analysis using computer simulations, and subsequently allow better assessment and management of explosion risks.

Confocal off-axis optical system with freeform mirror, application to Photon Simulator (PhoSim)

  • Kim, Dohoon;Lee, Sunwoo;Han, Jimin;Park, Woojin;Pak, Soojong;Yoo, Jaewon;Ko, Jongwan;Lee, Dae-Hee;Chang, Seunghyuk;Kim, Geon-Hee;Valls-Gabaud, David;Kim, Daewook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.75.2-76
    • /
    • 2021
  • MESSIER is a science satellite project to observe the Low Surface Brightness (LSB) sky at UV and optical wavelengths. The wide-field, optical system of MESSIER is optimized minimizing optical aberrations through the use of a Linear Astigmatism Free - Three Mirror System (LAF-TMS) combined with freeform mirrors. One of the key factors in observations of the LSB is the shape and spatial variability of the Point Spread Function (PSF) produced by scatterings and diffraction effects within the optical system and beyond (baffle). To assess the various factors affecting the PSF in this design, we use PhoSim, the Photon simulator, which is a fast photon Monte Carlo code designed to include all these effects, and also atmospheric effects (for ground-based telescopes) and phenomena occurring inside of the sensor. PhoSim provides very realistic simulations results and is suitable for simulations of very weak signals. Before the application to the MESSIER optics system, PhoSim had not been validated for confocal off-axis reflective optics (LAF-TMS). As a verification study for the LAF-TMS design, we apply Phosim sequentially. First, we use a single parabolic mirror system and compare the PSF results of the central field with the results from Zemax, CODE V, and the theoretical Airy pattern. We then test a confocal off-axis Cassegrain system and check PhoSim through cross-validation with CODE V. At the same time, we describe the shapes of the freeform mirrors with XY and Zernike polynomials. Finally, we will analyze the LAF-TMS design for the MESSIER optical system.

  • PDF

A Leverage Strategy of the Defense Program Analysis Based on Systems Thinking (시스템 사고를 이용한 국방 사업분석 레버리지 전략)

  • Seo, Hyeok;Lee, Sang-Eun
    • Korean System Dynamics Review
    • /
    • v.10 no.1
    • /
    • pp.77-95
    • /
    • 2009
  • The ever-increasing government budget constraints have led to a continued decline in the increase rate for defense spending, and the government's 5-year National Fiscal Management Plan has served to reinforce the verification and validation procedures for the Force Improvement Programs (FIP) budget requirements and performance. Additionally, as large programs are controlled in accordance with the Total Program Cost Management Guidelines, timely and credible feasibility study and performance measurement need to be conducted. Due to these internal and external circumstances, needs have surged for feasibility and economic effectiveness study for big ticket projects in the FIP sector, with an increasing number of studies conducted by external research institutes. However, questions have been raised regarding the credibility and thoroughness of the program analyses performed by these research institutes due to various restrictions. This paper analyzes and identifies the structural limitations and problems using a systems thinking approach, and examines the systemic characteristics of the program analysis system. It also presents policy intervention recommendations based on the theory of systems thinking, a method to regularize and reinforce the program analysis system. Policy interventions recommended to ensure alignment of the external studies to the clear analysis objectives and resolve the bottlenecks in the external analysis include training those in charge of external study commissioning for a short term intervention, and increasing the number of research institutes and consulting agencies utilizing analysis and evaluation experts who transition to the private sector from the military for a long term intervention. additionally presented are strategies and policy alternatives to best utilize these policy interventions. They will contribute to the stable funding of Force Improvement Programs and efficient utilization of defense budget.

  • PDF

The optimization study of core power control based on meta-heuristic algorithm for China initiative accelerator driven subcritical system

  • Jin-Yang Li;Jun-Liang Du;Long Gu;You-Peng Zhang;Cong Lin;Yong-Quan Wang;Xing-Chen Zhou;Huan Lin
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.452-459
    • /
    • 2023
  • The core power control is an important issue for the study of dynamic characteristics in China initiative accelerator driven subcritical system (CiADS), which has direct impact on the control strategy and safety analysis process. The CiADS is an experimental facility that is only controlled by the proton beam intensity without considering the control rods in the current engineering design stage. In order to get the optimized operation scheme with the stable and reliable features, the variation of beam intensity using the continuous and periodic control approaches has been adopted, and the change of collimator and the adjusting of duty ratio have been proposed in the power control process. Considering the neutronics and the thermal-hydraulics characteristics in CiADS, the physical model for the core power control has been established by means of the point reactor kinetics method and the lumped parameter method. Moreover, the multi-inputs single-output (MISO) logical structure for the power control process has been constructed using proportional integral derivative (PID) controller, and the meta-heuristic algorithm has been employed to obtain the global optimized parameters for the stable running mode without producing large perturbations. Finally, the verification and validation of the control method have been tested based on the reference scenarios in considering the disturbances of spallation neutron source and inlet temperature respectively, where all the numerical results reveal that the optimization method has satisfactory performance in the CiADS core power control scenarios.

SiRENE: A new generation of engineering simulator for real-time simulators at EDF

  • David Pialla;Stephanie Sala;Yann Morvan;Lucie Dreano;Denis Berne;Eleonore Bavoil
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.880-885
    • /
    • 2024
  • For Safety Assisted Engineering works, real-time simulators have emerged as a mandatory tool among all the key actors involved in the nuclear industry (utilities, designers and safety authorities). EDF, Electricité de France, as the leading worldwide nuclear power plant operator, has a crucial need for efficient and updated simulation tools for training, operating and safety analysis support. This paper will present the work performed at EDF/DT to develop a new generation of engineering simulator to fulfil these tasks. The project is called SiRENE, which is the acronym of Re-hosted Engineering Simulator in French. The project has been economically challenging. Therefore, to benefit from existing tools and experience, the SiRENE project combines: - A part of the process issued from the operating fleet training full-scope simulator. - An improvement of the simulator prediction reliability with the integration of High-Fidelity models, used in Safety Analysis. These High-Fidelity models address Nuclear Steam Supply System code, with CATHARE thermal-hydraulics system code and neutronics, with COCCINELLE code. - And taking advantage of the last generation and improvements of instructor station. The intensive and challenging uses of the new SiRENE engineering simulator are also discussed. The SiRENE simulator has to address different topics such as verification and validation of operating procedures, identification of safety paths, tests of I&C developments or modifications, tests on hydraulics system components (pump, valve etc.), support studies for Probabilistic Safety Analysis (PSA). etc. It also emerges that SiRENE simulator is a valuable tool for self-training of the newcomers in EDF nuclear engineering centers. As a modifiable tool and thanks to a skillful team managing the SiRENE project, specific and adapted modifications can be taken into account very quickly, in order to provide the best answers for our users' specific issues. Finally, the SiRENE simulator, and the associated configurations, has been distributed among the different engineering centers at EDF (DT in Lyon, DIPDE in Marseille and CNEPE in Tours). This distribution highlights a strong synergy and complementarity of the different engineering institutes at EDF, working together for a safer and a more profitable operating fleet.

Limitation of effective length method and codified second-order analysis and design

  • Chan, S.L.;Liu, Y.P.;Zhou, Z.H.
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.181-192
    • /
    • 2005
  • The effective length method for flexural (column) buckling has been used for many decades but its use is somewhat limited in various contemporary design codes to moderately slender structures with elastic critical load factor (${\lambda}_{cr}$) less than 3 to 5. In pace with the use of higher grade steel in recent years, the influence of buckling in axial buckling resistance of a column becomes more important and the over-simplified assumption of effective length factor can lead to an unsafe, an uneconomical or a both unsafe and uneconomical solution when some members are over-designed while key elements are under-designed. Effective length should not normally be taken as the distance between nodes multiplied by an arbitrary factor like 0.85, 1.0, 2.0 etc. Further, the classification of non-sway and sway-sensitive frames makes the conventional design procedure tedious to use and, more importantly, limited to simple regular frames. This paper describes the practical use of second-order analysis with section capacity check allowing for $P-{\delta}$ and $P-{\Delta}$ effects together with member and system imperfections. Most commercial software considers only the $P-{\Delta}$ effect, but not member and frame imperfections nor $P-{\delta}$ effect, and engineers must be very careful in their uses. A verification problem is also given for validation of software for this type of powerful second-order analysis and design. It is a trend for popular and advanced national design codes in using the second-order analysis as a norm for analysis and design of steel structures while linear analysis may only be used in very simple structures.

ASSESSMENT OF CFD CODES USED IN NUCLEAR REACTOR SAFETY SIMULATIONS

  • Smith, Brian L.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.339-364
    • /
    • 2010
  • Following a joint OECD/NEA-IAEA-sponsored meeting to define the current role and future perspectives of the application of Computational Fluid Dynamics (CFD) to nuclear reactor safety problems, three Writing Groups were created, under the auspices of the NEA working group WGAMA, to produce state-of-the-art reports on different aspects of the subject. The work of the second group, WG2, was to document the existing assessment databases for CFD simulation in the context of Nuclear Reactor Safety (NRS) analysis, to gain a measure of the degree of quality and trust in CFD as a numerical analysis tool, and to take initiatives to extend the existing databases. The group worked over the period of 2003-2007 and produced a final state-of-the-art report. The present paper summarises the material gathered during the study, illustrating the points with a few highlights. A total of 22 safety issues were identified for which the application of CFD was considered to potentially bring real benefits in terms of better understanding and increased safety. A list of the existing databases was drawn up and synthesised, both from the nuclear area and from other parallel, non-nuclear, industrial activities. The gaps in the technology base were also identified and discussed. In order to initiate new ways of bringing experimentalists and numerical analysts together, an international workshop -- CFD4NRS (the first in a series) -- was organised, a new blind benchmark activity was set up based on turbulent mixing in T-junctions, and a Wiki-type web portal was created to offer online access to the material put together by the group giving the reader the opportunity to update and extend the contents to keep the information source topical and dynamic.

Verification of Analytical Method of Azaspiracid Toxins in Shellfish and Tunicates by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS (Liquid Chromatography-Tandem Mass Spectrometry)를 이용한 패류 및 피낭류 중 아자스필산 분석법의 유효성 검증)

  • Cho, Sung Rae;Jeong, Sang Hyeon;Park, Kunbawui;Yoon, Minchul;Kim, Dong Wook;Son, Kwang Tae;Ha, Kwang Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.4
    • /
    • pp.404-410
    • /
    • 2021
  • Although, mouse bioassay for the monitoring of azaspiracids (AZAs) toxins in shellfish has been used previously, the reported method has low sensitivity and it is time-consuming. Recently, there is an interest in the quantitative analysis of AZAs using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The purpose of this study is to verify the simultaneous analysis of AZAs in shellfish and tunicate in Korea using LC-MS/MS. To validate the method, linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, and repeatability were determined. All standard compounds were analyzed within 7 min. The correlation coefficients (R2) of the standard solution was higher than 0.9995 (within the range of 0.8-10.0 ㎍/L). The LODs and LOQs of AZAs in shellfish were 0.08-0.16 ㎍/kg and 0.23-0.50 ㎍/kg, respectively. The accuracy and precision of the method for determining AZAs in shellfish were 87.1-93.0% and 1.23-4.91%, respectively. Consequently, the verified LC-MS/MS method is suitable to analyze AZAs in shellfish and tunicates in Korea.