• Title/Summary/Keyword: Verdet constant

Search Result 9, Processing Time 0.018 seconds

Faraday Rotation of the Hoya FR5 and FR4 Glasses at Cryogenic Temperature (저온에서 Hoya FR5 및 FR4 유리의 Faraday 회전)

  • 이현곤;원영희;이경수
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.352-358
    • /
    • 1995
  • Measurements of the Faraday rotation and magnetization of terbium-doped Hoya FR5 glass and cerium-doped Hoya FR4 glass have been made as a function of temperature T in the range 4.2 K -10 K and of magnetic field H of up to 80 kG at the $Ar^+$ laser wavelength of 514.5nm. The saturations of magnetization and Faraday rotation above H/T> $5kG.K^{-1}$ can be analyzed by the quantum theory of paramagnetism. Calculated parameters show that the large Verdet constant of $Ce^{3+}$ glass is due to the effective $4f\rightarrow5d$ electric dipole transition effect and that of $Tb^{3+}$ glass is due to the magnetization effect.effect.

  • PDF

Fabrication and Optical Characterization of Highly Dy3+-ion-incorporated Alumino-borosilicate Glasses for Magneto-optical Applications at 1550 nm (1550 nm 자기광학 응용을 위한 고농도 Dy3+ 이온이 함유된 알루미노보로실리케이트 유리의 제조 및 자기광학 특성 분석)

  • Kadathala Linganna;Yong-Tak Ryu;Young-Ouk Park;Bong-Ahn Yu;Bok Hyeon Kim
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.3
    • /
    • pp.115-120
    • /
    • 2024
  • Magneto-optical (MO) materials have attracted much attention, since they can be utilized for various optical applications, such as magnetic field sensors, optical current sensors, optical isolators, and optical circulators. In this study, alumino-borosilicate (ABS) glasses with high concentrations of Dy3+ ions were fabricated by a conventional melt-quenching technique, and the dependence of their thermal, optical, and magneto-optical properties on Dy3+ ion concentration was investigated. The MO property of the glasses was investigated by measurement of Faraday rotation at 1550 nm. The Faraday rotation angle increased linearly with the increase of Dy3+ ion concentration in the glasses. A very high Verdet constant of -6.86 rad/(T·m) was obtained for glass with a Dy3+ ion concentration of 30 mol%. In addition, the ABS-Dy glasses showed good thermal stability of greater than 128 ℃ against crystallization, and high optical transmission of 70% in the visible to near-infrared windows of 480-720, 1390-1560, and 1800-2400 nm. Due to the high Verdet constant and good thermal stability, the ABS-Dy glasses in this study could be candidate optical materials for MO device applications at 1550 nm.

Fabrication of Eu$^{2+}$-doped Fiber and its Faraday Rotation Characteristics (Eu$^{2+}$이 첨가된 광섬유의 제조 및 Faraday 회전 특성)

  • Kim, Deok-Hyeon;Kim, Bok-Hyeon;Baek, Un-Chul;Han, Won-Taek
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2004.02a
    • /
    • pp.124-125
    • /
    • 2004
  • Eu$^{2+}$ doped optical fibers were developed for magneto-optical application by use of CO gas as a reduction agent during MCVD process and the Verdet constant of the Eu$^{2+}$ doped fiber was found to be -0.819[rad/T ${\cdot}$ m], which is three times larger than that of the Eu$^{3+}$ doped fiber.

  • PDF

A Study on the Magnetooptic Current Measurement System Using SF-4 Flint Glass (SF-4 Flint Glass를 이용한 자기광학적 전류측정시스템에 관한 연구)

  • Jo, In-Sik;Kim, Eun-Su;Yang, In-Eung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.3
    • /
    • pp.43-47
    • /
    • 1985
  • This paper describes fiber-optic current sensor using SF-4 flint glass for the first time, ails the flint glass has been theoretically analyzed by jones matrix and experimentally verified. Verdet constant of SF-4 flint glass, which determines the sensitivity of current sensor, has been experimentally found as 0.0606(min/g.cm). It is relatively lower value than currently used faraday rotators such as FR-5, SF-6 flint glasses and YIG. The fiber.optic current sensor system was established and the current measurement was performed in the range of 100-600 (A) and 100- 500 (G). It has beenfhown by the experi-mental results that the detector output linearly increased in proportion to the current. Since these experimental results were in good agreement with theoretical results, it has been shown that SF-4 flint glass can be used for the magnetooptic current sensor.

  • PDF

Magnetic and Magneto-Optical Properties of Conjugated Polymers: A New Frontier

  • Gangopandhyay, Palash;Foerier, Stijn;Vangheluwe, M.;Koeckelberghs, Guy;Verbiest, Thiery;Persoons, Andr
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.23-24
    • /
    • 2006
  • Magnetic and magneto-optical properties of regioregular (>99%) poly(3-dodecylthiopenes are investigated. Faraday rotation of spin-coated films show extremely large Verdet constants, falling strongly with decreasing regioregularity. EPR spectroscopy at room temperature shows the presence of about 1 spin/190 monomers, indicative of delocalisation beyond a single polymer chain. SQUID measurements on the polymer give an effective magnetic moment of about 48900 mB, corrsponding to a S-value of 25.000. The Weiss-constant is 1.33 K indicating ferromagnetic coupling. Our experimental results show that organic polymer magnets can be prepared. Large MO effects allow the use of these materials in all-organic MO-sensors and devices.

  • PDF

A Study on Performance Improvement of Optical Current Transformer and Signal Processor (벌크형 광 CT 센서 및 신호처리부 성능 개선 방안 연구)

  • Kim, Young-Soo;Park, Byung-Seok;Kim, Myong-Soo;Lim, Yong-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1929-1932
    • /
    • 2002
  • In this paper, some parameters are studied for the performance improvement of a bulk optical current sensor. The performance of optical current sensor is influenced by current measuring range, Verdet constant change due to temperature change, temperature variation of wave plate, signal to noise ratio of optical transmitter/receiver, optical bias mismatch. Two types of optical current sensors are implemented and tested in the current range from 10 ampere to 200 ampere.

  • PDF

Implantation of DC Optical Current Sensor Based on Faraday Effect for HVDC (페러데이 효과를 이용한 특고압 직류전송용 광전류 센서 구현)

  • Kim, Kwang Taek;Chung, Dae Won;Kim, Young Soo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.187-190
    • /
    • 2019
  • We proposed and demonstrated DC(direct current) optical current sensor based on Faraday effect for HVDC(high voltage direct current). The RIG((Bi1.3Gd0.43Y1.27)Fe5O12) was adopted as Faraday device because of its high Verdet constant and good thermal stability. The differential amplification scheme for signal processing was present. The sensor showed high linear response for the input current. Measurement range of the sensor was 0~200A and measurement error was less than 1%.

Fabrication and Sensor Properties of Garnet Thin Films for Magneto-Optic Electrical Current and Magnetic Field Sensor (광자기 전류 자장 센서용 가넷 박막의 제조 및 센서 특성)

  • 김덕실;조재경
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.2
    • /
    • pp.74-78
    • /
    • 1998
  • High quality single cystal Bi, Gd : YIG films have been grown on GCMZGG wafers by LPE techniques. The magnetic, magneto-optic and sensor properties of the films have been investigated. The films showed high linearity with almost no hystersis, saturaton Faraday rotation angle of 45$^{\circ}$, saturation field of about 1.1 kOe, Verdet constant of 5.6$^{\circ}$ /(Oe, cm) at room temperature, and temperture coefficient of Verset constant of 0.0056$^{\circ}$ /(Oe, cm, $^{\circ}C$) in the range of 0 $^{\circ}C$~100 $^{\circ}C$. The sensor made out of the film exhibited highly linear signal in the range of 3 A-300 A.

  • PDF

Improvement of Thermal Stability of Optical Current Sensors Based on Polymeric Optical Integrated Circuits for Quadrature Phase Interferometry (사분파장 위상 간섭계 폴리머 광집적회로 기반 광전류센서의 온도 안정성 향상 연구)

  • Chun, Kwon-Wook;Kim, Sung-Moon;Park, Tae-Hyun;Lee, Eun-Su;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.6
    • /
    • pp.249-254
    • /
    • 2019
  • An optical current sensor device that measures electric current by the principle of the Faraday effect was designed and fabricated. The polarization-rotated reflection interferometer and the quadrature phase interferometer were introduced so as to improve the operational stability. Complex structures containing diverse optical components were integrated in a polymeric optical integrated circuit and manufactured in a small size. This structure allows sensing operation without extra bias feedback control, and reduces the phase change due to environmental temperature changes and vibration. However, the Verdet constant, which determines the Faraday effect, still exhibits an inherent temperature dependence. In this work, we tried to eliminate the residual temperature dependence of the optical current sensor based on polarization-rotated reflection interferometry. By varying the length of the fiber-optic wave plate, which is one of the optical components of the interferometer, we could compensate for the temperature dependence of the Verdet constant. The proposed optical current sensor exhibited measurement errors maintained within 0.2% over a temperature range, from 25℃ to 85℃.