Acknowledgement
행정안전부 2021년도 사회복합재난 대응기술개발사업(과제번호 20015728); 산업통상자원부 2021년도 에너지 효율 향상을 위한 광소자시스템 기술개발 사업(과제번호 20016870); 산업통상자원부 2022년도 신재생에너지핵심기술개발사업(과제번호 20223030020230); 중소벤처기업부 2021년도 중소기업기술개발 지원사업(과제번호 S3056709).
References
- K. J. Carothers, R. A. Norwood, and J. Pyun, "High Verdet constant materials for magneto-optical faraday rotation: A review," Chem. Mater. 34, 2531-2544 (2022). https://doi.org/10.1021/acs.chemmater.2c00158
- L. Zhang, D. Hu, I. L. Snetkov, S. Balabanov, O. Palashov, and J. Li, "A review on magneto-optical ceramics for Faraday isolators," J. Adv. Ceram. 12, 873-915 (2023). https://doi.org/10.26599/JAC.2023.9220742
- K. Linganna, Y. T. Ryu, K. Naeem, S. Ju, W. T. Han, and B. H. Kim, "Fabrication and characterization of highly Dy3+- and Tb3+-doped germano-borate glasses for magneto-optic device applications at 1.55 ㎛," J. Non-Cryst. Solids 585, 121520 (2022).
- X. Zhao, W. Li, Q. Xia, P. Lu, H. Tao, M. Xia, X. Zhang, X. Zhao, and Y. Xu, "High Verdet constant glass for magnetic field sensors," ACS Appl. Mater. Interfaces 14, 57028-57036 (2022). https://doi.org/10.1021/acsami.2c18119
- H. Lin, H. Yang, L. Zhou, J. He, B. Liu, N. Li, C. Li, S. Li, W. Yang, X. Jiang, H. Liu, F. Zeng, and Z. Su, "Research on the physical and optical properties of Dy3+ doped 30 mol% Tb2O3-B2O3-GeO2-PbO-SiO2 magneto-optical glass with high Verdet constant," J. Phys. Chem. Solids 166, 110682 (2022).
- V. D. Dubrovin, X. Zhu, M. Mollaee, J. Zong, and N. Peyghambarian, "Highly Dy2O3 and Er2O3 doped boron-aluminosilicate glasses for magneto-optical devices operating at 2 µm," J. Non-Cryst. Solids 569, 120986 (2021).
- M. Mollaee, X. Zhu, S. Jenkins, J. Zong, E. Temyanko, R. Norwood, A. Chavez-Pirson, M. Li, D. Zelmon, and N. Peyghambarian, "Magneto-optical properties of highly Dy3+ doped multicomponent glasses," Opt. Express 28, 11789-11796 (2020). https://doi.org/10.1364/OE.392008
- M. Mollaee, X. Zhu, D. Zelmon, J. Zong, M. Li, A. Chavez-Pirson, and N. Peyghambarian, "Magneto-optical faraday effect of Dy3+ doped germanate-phosphate glasses," in Proc. CLEO:QELS-Fundamental Science 2019 (Optica Publishing Group, 2019), paper JTu2A.107.
- F. Suzuki, N. Fujita, and F. Sato, "Small short-wavelength optical isolator using Tb3+-rich magneto-optical glass," Proc. SPIE 10914, 1091412 (2019).
- S. Pradhan, A. Masoudi, and G. Brambilla, "High performance tunable fiber-optic current sensor based on Faraday rotation in toroidal sensing coil," Proc. SPIE 12139, 121390U (2022).
- D. F. Franco, R. G. Fernandes, J. F. Felix, V. R. Mastelaro, H. Eckert, C. R. M. Afonso, Y. Messaddeq, S. H. Messaddeq, S. Morency, and M. Nalin, "Fundamental studies of magneto-optical borogermanate glasses and derived optical fibers containing Tb3+," J. Mater. Res. Tech. 11, 312-327 (2021). https://doi.org/10.1016/j.jmrt.2021.01.010
- A. V. Malakhovskiia, V. A. Isachenkob, A. L. Sukhacheva, A. M. Potseluykoa, V. N. Zabludaa, T. V. Zarubinac, and I. S. Edelman, "Magneto-optical properties of Dy3+ in oxide glasses: The origin of the magneto-optical activity of f-f transitions and its anomalous temperature dependence," Phys. Solid State 49, 701-707 (2007). https://doi.org/10.1134/S1063783407040178
- M. Valeanu, M. Sofronie, A. C. Galca, F. Tolea, M. Elisa, B. Sava, L. Boroica, and V. Kuncser, "The relationship between magnetism and magneto-optical effects in rare earth doped aluminophosphate glasses," J. Phys. D: Appl. Phys. 49, 075001 (2016).
- J. Ballato and E. Snitzer, "Fabrication of fibers with high rareearth concentrations for Faraday isolator applications," Appl. Opt. 34, 6848-6854 (1995). https://doi.org/10.1364/AO.34.006848
- Y. Zhang, S. Murai, A. Maeno, H. Kaji, M. Shimizu, Y. Shimotsuma, Z. Ma, J. Qiu, and K. Tanaka, "Microstructure and Faraday effect of Tb2O3-Al2O3-SiO2-B2O3 glasses for fiber-based magneto-optical applications," J. Am. Ceram. Soc. 105, 1198-1209 (2022). https://doi.org/10.1111/jace.18163
- J. J. Schuyt and G. V. M. Williams, "Photoluminescence of Dy3+ and Dy2+ in NaMgF3:Dy: A potential infrared radiophotoluminescence dosimeter," Radiat. Meas. 134, 106326 (2020).