• 제목/요약/키워드: Ventricular electromechanical model

검색결과 6건 처리시간 0.021초

Computational analysis of the electromechanical performance of mitral valve cerclage annuloplasty using a patient-specific ventricular model

  • Lee, Kyung Eun;Kim, Ki Tae;Lee, Jong Ho;Jung, Sujin;Kim, June-Hong;Shim, Eun Bo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제23권1호
    • /
    • pp.63-70
    • /
    • 2019
  • We aimed to propose a novel computational approach to predict the electromechanical performance of pre- and post-mitral valve cerclage annuloplasty (MVCA). Furthermore, we tested a virtual estimation method to optimize the left ventricular basement tightening scheme using a pre-MVCA computer model. The present model combines the three-dimensional (3D) electromechanics of the ventricles with the vascular hemodynamics implemented in a lumped parameter model. 3D models of pre- and post-MVCA were reconstructed from the computed tomography (CT) images of two patients and simulated by solving the electromechanical-governing equations with the finite element method. Computed results indicate that reduction of the dilated heart chambers volume (reverse remodeling) appears to be dependent on ventricular stress distribution. Reduced ventricular stresses in the basement after MVCA treatment were observed in the patients who showed reverse remodeling of heart during follow up over 6 months. In the case who failed to show reverse remodeling after MVCA, more virtual tightening of the ventricular basement diameter than the actual model can induce stress unloading, aiding in heart recovery. The simulation result that virtual tightening of the ventricular basement resulted in a marked increase of myocardial stress unloading provides in silico evidence for a functional impact of MVCA treatment on cardiac mechanics and post-operative heart recovery. This technique contributes to establishing a pre-operative virtual rehearsal procedure before MVCA treatment by using patient-specific cardiac electromechanical modeling of pre-MVCA.

피지옴 모델을 이용한 심실의 전기활성시간 분포에 따른 심박출 성능평가 (Estimation of Cardiac Pumping Performance according to the Ventricular Electrical Activation Time Distribution by Using Physiome Model)

  • 김형균;임기무
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권5호
    • /
    • pp.198-203
    • /
    • 2015
  • The purpose of the study is to examine the effects of pacemaker location on cardiac pumping efficacy theoretically. We used a three-dimensional finite element cardiac electromechanical model of canine ventricles with models of the circulatory system. Electrical activation time for normal sinus rhythm and artificial pacing in apex, left ventricular free wall, and right ventricular free wall were obtained from electrophysiological model. We applied the electrical activation time maps to the mechanical contraction model and obtained cardiac mechanical responses such as myocardial contractile ATP consumption, stroke work, stroke volume, ejection fraction, and etc. Among three artificial pacing methods, left ventricle pacing showed best performance in ventricular pumping efficacy.

급성 심근경색 병변에 따른 심실의 전기 역학적 특성 분석: 컴퓨터 시뮬레이션 연구 (Analysis of Ventricular Electromechanical Characteristics by Lesions in Sudden Myocardial Infraction: Computer Simulation Study)

  • 백동근;정다운;임기무
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권6호
    • /
    • pp.313-320
    • /
    • 2017
  • Myocardial infarction is a disease caused by stenosis of the coronary arteries. The high risk of sudden cardiac death due to myocardial infarction has triggered related researches that have been actively studied so far. However, these studies focused on the clinical results, which are mainly based on observations of symptoms due to infarction through electrocardiograms. Therefore, in this study, we tried to analyze the behavior of heart according to the position and volume of infarction lesion through the computer simulation study using three dimensional ventricular models. In order to implement infarction, commercial software was used to simulate cell necrosis due to blockage of a specific coronary. In addition, the conduction block due to infarction was mimicked by reducing the electrical conduction in the infarcted area, which was 100 times less than the electrical conduction of the whole ventricular lattice implemented by the finite element analysis method. Thus, this study classified the infarcted cases into the upper, middle, lower, and apex according to lattice data of eight different infraction areas. In other words, we assumed that myocardial infarction would have inherent electro-dynamic characteristics depending on the location and extent, and analyzed the ventricular electromechanical responses for infarction lesions using a three dimensional cardiac physiome model. The results showed that the volume of infarction did not directly affect the cardiac responses, but the location of the infarction lesions could influence the ventricular pumping efficiency. These suggest that the occlusion of specific coronary arteries may have a fatal effect on the decline in ventricular performance. In conclusion, although location of myocardial infarction lesions is considered to be an important variable to be considered clinically rather than lesion size, quantitative predictions should be made more in the future considering physiological factors such as lesion location and direction of myocardial fiber at that location.

심부전 정도에 따른 좌심실보조장치의 박동효율예측을 위한 심장의 전기역학적 유한요소 모델의 응용 (Application of Cardiac Electromechanical FE Model for Predicting Pumping Efficacy of LVAD According to Heart Failure Severity)

  • 정대현;임기무
    • 대한기계학회논문집B
    • /
    • 제38권8호
    • /
    • pp.715-720
    • /
    • 2014
  • 좌심실보조장치(LVAD)가 심실부하감소에 미치는 영향을 극대화 하기 위해, 심실보조장치 치료를 위한 최적의 심부전 심각도 단계를 찾는 것은 중요하다. 우리는 심부전 정도에 따른 LVAD 의 박동효율을 이론적으로 예측하였다. 우리는 혈관시스템의 6 컴파트먼트의 Wind-kessel 모델과 연동된 심실의 삼차원 유한요소모델을 사용하였다. 이 모델을 이용하여, LVAD 치료 하에서 심부전의 정도에 따라 심실의 수축성 ATP 소모율, 좌심실압력, 심박출량, 심박출 분획, 1 회심박출량 등과 같은 심장응답을 예측하였다. LVAD 치료 중에 에너지학적 부하조건을 암시하는 수축성 ATP 소모율은 5 단계 심부전 조건에서 가장 크게 감소하였다. 따라서, 우리는 LVAD 를 회복으로의 가교로서 고려하고 있을 때, 심부전 5 단계에서 LVAD 치료를 시작하는 것이 가장 적절하다는 결론을 내린다.

2중 적응제어방식에 의한 전치환 인공심장의 전부하에 민감한 심박출량 조절 (The Preload-Responsive Regulation of Cardiac Output in Total Artificial Heart Using Dual Adaptive Controller)

  • 이상훈;김인영;안혁;민병구
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권1호
    • /
    • pp.41-50
    • /
    • 1993
  • This paper proposes an adaptive technique for the cardiac output regulation of a pendulum type electromechanical TAH. This techinque, which consists of two RLSE's and two PASTC' 5, performs Its controllability over the TAIB so that the m(RAP) and m(LAP) values re- main close to their desired values under she assumption that the variation of m(RAP) and m (LAP) are dominated by the variation of C.0. and the difference between the left and right ventricular output, respectively. To evaluate the performance of the proposed control system, a simulation is performed by using a human model which contains physiologic, drug and treatment, artificial heart and noise models. As a result, dual adaptive controller showed that abnormal m(LAP) and m(RAP) could be recovered to the normal range within 10minute and maintained desired value in steady state. The operation of this controller prored to be robust in spite of the rapid variation of human status.

  • PDF

양에서 시행한 이동작동기 형태(MOVING ACTUATOR TYPE) 인공심장의 삽입실험 (Experimental Implantation of Moving Actuator Type Total Artificial Heart in Sheep)

  • 김원곤
    • Journal of Chest Surgery
    • /
    • 제28권6호
    • /
    • pp.533-541
    • /
    • 1995
  • We recently developed a new model of moving actuator type totally implantable artificial heart[TIAH , based on the reverse position of the aortic and pulmonary conduits. This concept was proposed by one of surgeons in our team[Joon-Ryang Rho, M.D. to facilitate anatomical fitting of TIAHs. The moving actuator type electromechanical TIAH consisted of the left and right blood sacs, and the moving actuator including a motor. The inverted umbrella type polyurethane valves were used in the blood pumps. The aortic conduit was positioned anterior to the pulmonary conduit, which was the opposite relation to the conventional configuration of other total artificial hearts. We also adapted slip-in connectors for the aortic and pulmonary conduits. Two sheep , weighing 60-69 kg, were used for implantation. After small cervical incision and trans-sternal bilateral thoracotomy, cardiopulmonary bypass [CPB was administered using an American Optical 5-head pump and a membrane oxygenator[Univox-IC, Bentley . The anterior and posterior vena cavae were drained separately for venous return. An arterial return cannula was inserted into the right common carotid artery. During CPB, almost all of the ventricular myocardium was excised down to the atrioventricular groove and the artificial heart was implanted. We achieved 3-day survival in the first sheep and 2-day survival in the second. The day after operation the first sheep was successfully extubated and the second sheep was weaned from a respirator with good condition. After extubation, the first sheep walked around in the cage and fed herself. Serial laboratory and hemodynamic examinations were done during the experiments. In both sheep, pulmonary dysfunction was gradually developed, which was accompanied by acute renal failure. The animals were sacrificed and autopsy was done. Unexpected pregnnacy was incidentally found in both sheep. To our knowledge this is the first report of significant survival cases in the orthotopic implantation of electric TIAH using sheep.

  • PDF