• Title/Summary/Keyword: Ventilation factor

Search Result 241, Processing Time 0.032 seconds

Analysis of Ventilation Performance Using a Model Chamber

  • Kang Tae-Wook;Chang Tae-Hyeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.736-743
    • /
    • 2005
  • In this study, three different types of mechanical ventilation systems are compared based on their ventilation characteristics: tracer gas concentration decay characteristics, and ventilation effectiveness by calculating actual ventilation air flow rate. The experiments are performed by using a step-down method for measuring tracer gas. $CO_{2}$ gas, concentration in the model chamber. Application of a mixing factor, k, was used and measured values ranged from 0.68 to 0.77. The Type 2 ventilation system was found to have the highest ventilation effectiveness rather than the Types 1 and 3.

An Experimental Study for the Improvement of Ventilation Conditions and Effectiveness in the Manufacturing Industry by Increasing the Mixing Factor (K-Factor) (혼합계수(K-Factor) 증가에 따른 사업장의 환기 조건 및 효율 개선에 관한 연구)

  • Lee, Yun-ho;Lee, Seokwon;Lee, Kyoungho;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.3
    • /
    • pp.343-350
    • /
    • 2019
  • Objectives: This study aims to identify whether ventilation conditions and their effectiveness can be significantly improved in an experimental chamber by increasing the mixing factor (K-Factor). Methods: In a chamber with a volume of $1m^3$, air velocity was measured at six different points with four roof fans in the upper part of the chamber being operated in order. The impact of the ventilation conditions was analyzed when the flow rates were increasing and the first inlet of the chamber was either open or closed. Smoke patterns were also observed at four corner points where ventilation was limited. Kruskal Wallis and Mann-Whitney tests were performed to compare air velocities measured in the chamber. Results: The air velocities measured at only the third point increased significantly from $0.03{\pm}0.03m/s$ (door open) and $0.05{\pm}0.06m/s$ (door closed) with two fans, $0.08{\pm}0.08m/s$ with three fans, and $0.09{\pm}0.09m/s$ with four fans operating (p<0.05). However, air velocities at the four corner points did not significantly increase. Smoke patters also showed that the open inlet of the chamber had no effect on improvement of ventilation conditions and effectiveness. Conclusions: In this study, the air velocities at six points in the chamber did not significantly increase despite the increase in the mixing factor and flow rates of ventilation in the controlled environment. Therefore, the inflow of outdoor air throughout an open inlet and installation of a forced ventilation system can potentially increase the indoor air velocity and improve ventilation condition without an increase in the mixing factor.

A Study on the Application of a Wind Power Generation System Using Outdoor Air on the Rooftop and Indoor Ventilation (건물 옥상외기와 실내배기를 활용한 풍력발전시스템 적용 연구)

  • Lee, Yong-Ho;Park, Jin-Chul;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.72-80
    • /
    • 2014
  • This study proposed a wind power generation system utilizing outdoor air on the rooftop and indoor ventilation, which would increase according to the building height, as a way to help to save energy consumption in a building by using wind power energy of the new renewable energy sources. The study measured the distribution of air currents and power generation according to the usage factor of exhaust pipes in the kitchen and bathroom and identified the elements to consider when applying a wind power generation system to buildings in order to use outdoor air on the rooftop increasing according to the height and the indoor ventilation produced in the facility vertical shafts inside the buildings by installing a wind power generation system on the rooftop. (1) The study measured the ventilation velocity of the kitchen hood and bathroom ventilation fan by changing the zone areas by the households according to the usage factor of [${\alpha}$]=33~100%. As a result, the kitchen ventilation pipe generated the ventilation wind of 3.0m/s or more at the usage factor of [${\alpha}$] 66% or higher, and the bathroom ventilation pipe generated ventilation velocity lower than 3.0m/s, the blade velocity of the wind power generator, even after the usage factor rose to [${\alpha}$]=100%. (2) As the old bathroom ventilation pipe generated the ventilation velocity of 3.0m/s, the blade velocity of the wind power generator, even with the rising usage factor [${\alpha}$], the application of an outdoor air induction module increased the ventilation velocity by 2.9m/s at the usage factor of [${\alpha}$]=33%, 3.8m/s at the usage factor of [${\alpha}$]=66%, and 3.6m/s at the usage factor of [${\alpha}$]=100%. Thus the ventilation velocity of 3.0m/s, the blade velocity of the wind power generator, or higher was secured. (3) The findings prove that the applicability of a wind power generation system using outdoor air on the rooftop and indoor ventilation is excellent, which raises a need for various efforts to increase the possibility of its commercialization such as securing its structural stability according to momentary gusts on the rooftop and typhoons in summer and making the structure light to react to the wind directions of outdoor air on the rooftop according to the seasons.

Effective Local Exhaust Ventilation on Cooking Fumes of Seasoned Meats

  • Lee Byeong Kyu;Ellenbecker Michael J.
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.2 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • This study identified the fumes produced from the cooking of the seasoned meats containing various condiments such as garlic, onion, pepper, soy sauce, and sesame oil. Concentrations, at the breathing zone of the cook, of volatile organic compounds (VOCs) and aldehydes included in the cooking fumes of seasoned meats were identified. Many chloro and fluoro-aliphatic hydrocarbons, aromatic hydrocarbons, ketones, and aldehydes, which could be carcinogen suspecting chemicals, were producing from the cooking fumes of the seasoned meats. This study also identified the ventilation efficiencies of the cooking fumes of the six exhaust ventilation systems, which were widely being used in the general apartments, houses, and small-food factories. For a comparison of the ventilation efficiencies of the systems, acetaldehyde was chosen as a marker pollutant and its concentrations at the breathing zone of the cook were identified. The laboratory fume hood showed the best ventilation efficiency of the six ventilation systems studied, and then the lateral hood ventilation and the down draft ventilation followed the laboratory fume hood. Finally, this study identified that both a wall factor nearby pollutant sources and a distance factor between the hood face and pollutant sources should be also considered for an effective local exhaust ventilation system design.

  • PDF

Effective Local Exhaust Ventilation on Cooking Fumes of Seasoned Meats

  • Byeong Kyu Lee;Mic
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.49-56
    • /
    • 1993
  • This study identified the fumes produced from the cooking of the seasoned meats containing various condiments such as garlic, onion, pepper, soy sauce, and sesame oil. Concentrations, at the breathing zone of the cook, of volatile organic compounds (VOCs) and aldehydes included in the cooking fumes of seasoned meats were identified. Many chloro- and fluoro-aliphatic hydrocarbons, aromatic hydrocarbons, ketones, and aldehydes, which could be carcinogen suspecting chemicals, were producing from the cooking fumes of the seasoned meats. This study also identified the ventilation efficiencies of the cooking fumes of the six exhaust ventilation systems, which were widely being used in the general apartments, houses, and small-food factories. For a comparison of the ventilation efficiencies of the systems, acetaldehyde was chosen as a marker pollutant and its concentrations at the breathing zone of the cook were identified. The laboratory fume hood showed the best ventilation efficiency of the six ventilation systems studied, and then the lateral hood ventilation and the down draft ventilation followed the laboratory fume hood. Finally, this study identified that both a wall factor nearby pollutant sources and a distance factor between the hood face and pollutant sources should be also considered for an effective local exhaust ventilation system design.

  • PDF

Estimation of Ventilation and Generation Rates Using Nitrogen Dioxide Measurements of Indoor and Outdoor in Houses (주택 실내.외 이산화질소 측정을 이용한 환기량 및 발생량 추정)

  • Yang, Won-Ho;Im, Sung-Guk;Son, Bu-Soon
    • Journal of Environmental Science International
    • /
    • v.17 no.10
    • /
    • pp.1069-1073
    • /
    • 2008
  • Indoor air quality can be affected by indoor sources, ventilation, decay and outdoor levels. Although technologies exist to measure these factors, direct measurements are often difficult. The purpose of this study was to develop an alternative method to characterize indoor environmental factors by multiple indoor and outdoor measurements. Using a mass balance model and regression analysis, penetration factor (ventilation rate divided by the sum of ventilation rate and deposition constant) and source strength factor (source strength divided by the sum of ventilation rate and deposition constant) were calculated using multiple indoor and outdoor measurements. Subsequently, the ventilation rate and $NO_2$ generation rate were estimated. Mean of ventilation rate was 1.41 ACH in houses, assuming a residential N02 deposition constant of 0.94 $hr^{-1}$. Mean generation rate of $NO_2$ was 16.5 ppbv/hr. According to house characterization, inside smoking and family number were higher $NO_2$ generation rates, and apartment was higher than single-family house. In conclusion, indoor environmental factors were effectively characterized by this method using multiple indoor and outdoor measurements.

Estimation of NO$_2$ Source Generation and Ventilation rate in Residence by Multiple Measurements

  • Won Ho, Yang;Gi Yeong, Lee
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.05a
    • /
    • pp.155-160
    • /
    • 2003
  • Indoor air quality can be affected by indoor sources, ventilation, decay and outdoor levels. Although technologies exist to measure these factors, direct measurements are often difficult. The purpose of this study was to develop an alternative method to characterize indoor environmental factors by multiple indoor and outdoor measurements. Daily indoor and outdoor $NO_2$ concentrations were measured for 30 consecutive days in 28 houses in Brisbane, Australia, and for 21 consecutive days in 37 houses in Seoul, Korea. Using a mass balance model and regression analysis, penetration factor (ventilation rate divided by the sum of ventilation rate and deposition constant) and source strength factor (source strength divided by the sum of ventilation rate and deposition constant) were calculated using multiple indoor and outdoor measurements. Subsequently, the ventilation rate and $NO_2$ source strength were estimated. Geometric means of ventilation rate were 1.44 ACH in Brisbane, assuming a residential $NO_2$ deposition constant of 1.05 $hr^{-1}$, and 1.36 ACH in Seoul, with the measured residential $NO_2$ deposition constant of 0.94 $hr^{-1}$. Source strengths of $NO_2$ were 15.8 $\pm$ 18.2 ${\mu}g$/$m^3$.hr and 44.7 $\pm$ 38.1${\mu}g$/$m^3$.hr in Brisbane and Seoul, respectively. In conclusion, indoor environmental factors were effectively characterized by this method using multiple indoor and outdoor measurements.

  • PDF

Estimation of Nitrogen Dioxide Source Generation and Ventilation Rate in Residence Using Multiple Measurements in Korea

  • Chung, Moon-Ho;Yang, Won-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2004.12a
    • /
    • pp.45-50
    • /
    • 2004
  • Indoor air quality can be affected by indoor sources, ventilation, decay and outdoor levels. Alt hough technologies exist to measure these factors, direct measurements are often difficult. The purpose of this study was to develop an alternative method to characterize indoor environmental factors by multiple indoor and outdoor measurements. Daily indoor and outdoor NO2 concentrations were measured for 30 consecutive days in 28 houses in Brisbane, Australia, and for 21 consecutive days in 37 houses in Seoul, Korea. Using a mass balance model and regression analysis, penetration factor (ventilation rate divided by the sum of ventilation rate and deposition constant) and source strength factor (source strength divided by the sum of ventilation rate and deposition constant) were calculated using multiple indoor and outdoor measurements. Subsequently, the ventilation rate and NO2 source strength were estimated. Geometric means of ventilation rate were 1.44 ACH in Brisbane, assuming a residential NO2 deposition constant of 1.05 hr-1, and 1.36 ACH in Seoul, with the measured residential NO2 deposition constant of 0.94 hr-1. Source strengths of N02 were 15.8 ${\pm}$ 18.2 ${\mu}$g/m3${\cdot}$hr and 44.7 ${\pm}$ 38.1 ${\mu}$g/m3${\cdot}$hr in Brisbane and Seoul, respectively. In conclusion, indoor environmental factors were effectively characterized by this method using multiple indoor and outdoor measurements.

  • PDF

Numerical study of the Effect of Ventilation Condition on Rolling Stock Fire Growth through the FDS Simulation (환기량 조건이 열차 화재 성장에 미치는 영향성에 대한 FDS 화재 시뮬레이션)

  • Yang, Sungl-Jin;Lee, Chang-Deok;Oh, Ji-Eun;Kang, Chan-Yong
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.124-132
    • /
    • 2010
  • To predict and analyze the rolling stock's fire growth is considered not only important factor in estimating hazard analysis of rolling stock, but also a primary factor in aspect of a rail load facility. Because it's could be regarded as a ignition source in risk assesment for the facility i.e. tunnel and station. However, currently, standardized method to predict and analyze the fire growth has not been completed yet. it is due to the fact that fire growth is not only depended on thermal property of interior materials, but also is affected dominantly by various factors such as ignition source (characterized by location, duration, and intensity), train running condition and in/exterior ventilation condition. Especially, ventilation condition is one of the most effective factor to affect fire growth in compartment space as noticed by under-ventilation fire condition. In this study, the effect of each ventilation condition on fire growth and load were examined through the numerical method through FDS (Fire Dynamics Simulator).

  • PDF

An Analysis of the Fire Load and Ventilation Factor in Underground Commercial Space (지하상업공간의 환기계수 및 화재하중 분석)

  • Choo Yeun-Hee;Lee Ji-Hee;Hong Won-Hwa
    • Journal of the Korean housing association
    • /
    • v.17 no.2
    • /
    • pp.135-142
    • /
    • 2006
  • The purpose of this study is to obtain the fire safety for underground commercial space with analysing fire loads and ventilation factors. It was adopted the investigation method of field survey with commercial uses for more confidential data. The results of this study can be summarized as follows; 1) The ventilation factor shows $0.04{\sim}0.24m^{1/2}$ and it may develop ventilation-controlled fires which have much fire hazard more than fuel-controlled fires. 2) The highest value of fire load is $158.48kg/m^2$ and appeared in footwear shop which has the value $137.35kg/m^2$ for unfixed combustibles and $21.13kg/m^2$ for fixed combustibles. 3) The average value of burning rates which mean the velocity of fire development and the fire damage range is 0.143. Therefore it is desired to decrease the combustibles of compartment and is needed the method of dispersion arrangement of goods and storage to steel cabinet and so on.